Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important You are here
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
Last updated at April 16, 2024 by Teachoo
Ex 5.1, 22 (iv) Discuss the continuity of cotangent functions.Let π(π) = πππ π π(π₯) = cosβ‘π₯/sinβ‘π₯ π(π₯) is defined for all real number except where sinβ‘π₯ = 0 i.e. x = ππ Let π(π)=cosβ‘π₯ & π(π)=sinβ‘π₯ We know that sinβ‘π₯ & cos x is continuous for all real number β΄ p(x) & q (x) are continuous functions By Algebra of continuous function If π, π are continuous , then π/π is continuous. Thus, π(π₯) = cosβ‘π₯/sinβ‘π₯ is continuous for all real numbers except where sinβ‘π₯ = 0 i.e. π= ππ , πβπ So, πππ π is continuous at all real numbers except where π= ππ , πβπ