Β

Β

Β

Β

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 5.1

Ex 5.1 ,1

Ex 5.1 ,2

Ex 5.1, 3 (a)

Ex 5.1, 3 (b)

Ex 5.1, 3 (c) Important

Ex 5.1, 3 (d) Important

Ex 5.1 ,4

Ex 5.1 ,5 Important

Ex 5.1 ,6

Ex 5.1 ,7 Important

Ex 5.1 ,8

Ex 5.1, 9 Important

Ex 5.1, 10

Ex 5.1, 11

Ex 5.1, 12 Important

Ex 5.1, 13

Ex 5.1, 14

Ex 5.1, 15 Important

Ex 5.1, 16

Ex 5.1, 17 Important

Ex 5.1, 18 Important

Ex 5.1, 19 Important

Ex 5.1, 20

Ex 5.1, 21

Ex 5.1, 22 (i) Important

Ex 5.1, 22 (ii)

Ex 5.1, 22 (iii)

Ex 5.1, 22 (iv) Important You are here

Ex 5.1, 23

Ex 5.1, 24 Important

Ex 5.1, 25

Ex 5.1, 26 Important

Ex 5.1, 27

Ex 5.1, 28 Important

Ex 5.1, 29

Ex 5.1, 30 Important

Ex 5.1, 31

Ex 5.1, 32

Ex 5.1, 33

Ex 5.1, 34 Important

Last updated at May 29, 2023 by Teachoo

Ex 5.1, 22 (iv) Discuss the continuity of cotangent functions.Let π(π) = πππ π π(π₯) = cosβ‘π₯/sinβ‘π₯ π(π₯) is defined for all real number except where sinβ‘π₯ = 0 i.e. x = ππ Let π(π)=cosβ‘π₯ & π(π)=sinβ‘π₯ We know that sinβ‘π₯ & cos x is continuous for all real number β΄ p(x) & q (x) are continuous functions By Algebra of continuous function If π, π are continuous , then π/π is continuous. Thus, π(π₯) = cosβ‘π₯/sinβ‘π₯ is continuous for all real numbers except where sinβ‘π₯ = 0 i.e. π= ππ , πβπ So, πππ π is continuous at all real numbers except where π= ππ , πβπ