Ex 5.1

Ex 5.1 ,1

Ex 5.1 ,2

Ex 5.1, 3 (a)

Ex 5.1, 3 (b)

Ex 5.1, 3 (c) Important

Ex 5.1, 3 (d) Important

Ex 5.1 ,4

Ex 5.1 ,5 Important

Ex 5.1 ,6

Ex 5.1 ,7 Important

Ex 5.1 ,8

Ex 5.1, 9 Important

Ex 5.1, 10

Ex 5.1, 11

Ex 5.1, 12 Important

Ex 5.1, 13

Ex 5.1, 14

Ex 5.1, 15 Important

Ex 5.1, 16

Ex 5.1, 17 Important

Ex 5.1, 18 Important

Ex 5.1, 19 Important You are here

Ex 5.1, 20

Ex 5.1, 21

Ex 5.1, 22 (i) Important

Ex 5.1, 22 (ii)

Ex 5.1, 22 (iii)

Ex 5.1, 22 (iv) Important

Ex 5.1, 23

Ex 5.1, 24 Important

Ex 5.1, 25

Ex 5.1, 26 Important

Ex 5.1, 27

Ex 5.1, 28 Important

Ex 5.1, 29

Ex 5.1, 30 Important

Ex 5.1, 31

Ex 5.1, 32

Ex 5.1, 33

Ex 5.1, 34 Important

Last updated at April 16, 2024 by Teachoo

Ex 5.1, 19 (Introduction) Show that the function defined by g (x) = x – [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x. Ex 5.1, 19 Show that the function defined by g (x) = x – [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x. Given g(x) = x − [𝑥] Let c be an integer g(x) is continuous at 𝑥 =𝑐 if L.H.L = R.H.L = 𝑔(𝑐) if lim┬(x→𝑐^− ) 𝑔(𝑥)=lim┬(x→𝑐^+ ) " " 𝑔(𝑥)=𝑔(𝑐) LHL at x → c lim┬(x→𝑐^− ) g(x) = lim┬(h→0) g(c − h) = lim┬(h→0) (𝑐−ℎ)−[𝒄−𝒉] = lim┬(h→0) (𝑐−ℎ)−(𝒄−𝟏) = lim┬(h→0) 𝑐−ℎ−𝑐+1 = lim┬(h→0) −ℎ+1 = 0+1 = 1 RHL at x → c lim┬(x→𝑐^+ ) g(x) = lim┬(h→0) g(c + h) = lim┬(h→0) (𝑐+ℎ)−[𝒄+𝒉] = lim┬(h→0) (𝑐−ℎ)−(𝒄) = lim┬(h→0) −ℎ = 𝟎 Since LHL ≠ RHL ∴ g(x) is not continuous at x = c Hence, g(x) is not continuous at all integral points. Hence proved