Ex 5.1, 26 - Find values of k so that f(x) = k cos x / pi - 2x

Ex 5.1, 26 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Ex 5.1, 26 - Chapter 5 Class 12 Continuity and Differentiability - Part 3

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

Share on WhatsApp

Transcript

Ex 5.1, 26 Find the values of k so that the function f is continuous at the indicated point 𝑓(π‘₯)={β–ˆ((π‘˜ cos⁑π‘₯)/(πœ‹ βˆ’ 2π‘₯ ) , 𝑖𝑓 π‘₯β‰ πœ‹/2@& 3, 𝑖𝑓 π‘₯=πœ‹/2)─ at π‘₯ = πœ‹/2 Given that function is continuous at π‘₯ =πœ‹/2 𝑓 is continuous at =πœ‹/2 if L.H.L = R.H.L = 𝑓(πœ‹/2) i.e. lim┬(xβ†’γ€–πœ‹/2γ€—^βˆ’ ) 𝑓(π‘₯)=lim┬(xβ†’γ€–πœ‹/2γ€—^+ ) " " 𝑓(π‘₯)= 𝑓(πœ‹/2) LHL at x β†’ 𝝅/𝟐 (π‘™π‘–π‘š)┬(π‘₯β†’γ€–πœ‹/2γ€—^βˆ’ ) 𝑓(π‘₯) = (π‘™π‘–π‘š)┬(β„Žβ†’0) 𝑓(πœ‹/2βˆ’β„Ž) = lim┬(hβ†’0) (π‘˜ cos⁑(πœ‹/2 βˆ’ β„Ž))/(πœ‹ βˆ’ 2(πœ‹/2 βˆ’ β„Ž) ) = lim┬(hβ†’0) (π‘˜ sinβ‘β„Ž)/(πœ‹ βˆ’ πœ‹ + 2β„Ž ) = lim┬(hβ†’0) (π‘˜ sinβ‘β„Ž)/(2β„Ž ) = k/2 (π’π’Šπ’Ž)┬(π‘β†’πŸŽ) 𝐬𝐒𝐧⁑𝒉/(𝒉 ) = π‘˜/2 Γ— 1 = π’Œ/𝟐 RHL at x β†’ 𝝅/𝟐 (π‘™π‘–π‘š)┬(π‘₯β†’γ€–πœ‹/2γ€—^+ ) 𝑓(π‘₯) = (π‘™π‘–π‘š)┬(β„Žβ†’0) 𝑓(πœ‹/2+β„Ž) = lim┬(hβ†’0) (π‘˜ cos⁑(πœ‹/2 + β„Ž))/(πœ‹ βˆ’ 2(πœ‹/2 + β„Ž) ) = lim┬(hβ†’0) (π‘˜ γ€–(βˆ’sinγ€—β‘β„Ž))/(πœ‹ βˆ’ πœ‹ βˆ’ 2β„Ž ) = lim┬(hβ†’0) (βˆ’π‘˜ sinβ‘β„Ž)/(βˆ’2β„Ž ) = k/2 (π’π’Šπ’Ž)┬(π‘β†’πŸŽ) π’”π’Šπ’β‘π’‰/(𝒉 ) = π‘˜/2 Γ— 1 = π‘˜/2 And 𝑓(πœ‹/2) = 3 Now, L.H.L = R.H.L = 𝑓(πœ‹/2) π‘˜/2 = π‘˜/2 = 3 Hence, π‘˜/2 = 3 k = 3 Γ— 2 k = 6 Hence, k = 6

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo