

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important You are here
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
Last updated at May 29, 2023 by Teachoo
Ex 5.1, 26 Find the values of k so that the function f is continuous at the indicated point 𝑓(𝑥)={█((𝑘 cos𝑥)/(𝜋 − 2𝑥 ) , 𝑖𝑓 𝑥≠𝜋/2@& 3, 𝑖𝑓 𝑥=𝜋/2)┤ at 𝑥 = 𝜋/2 Given that function is continuous at 𝑥 =𝜋/2 𝑓 is continuous at =𝜋/2 if L.H.L = R.H.L = 𝑓(𝜋/2) i.e. lim┬(x→〖𝜋/2〗^− ) 𝑓(𝑥)=lim┬(x→〖𝜋/2〗^+ ) " " 𝑓(𝑥)= 𝑓(𝜋/2) LHL at x → 𝝅/𝟐 (𝑙𝑖𝑚)┬(𝑥→〖𝜋/2〗^− ) 𝑓(𝑥) = (𝑙𝑖𝑚)┬(ℎ→0) 𝑓(𝜋/2−ℎ) = lim┬(h→0) (𝑘 cos(𝜋/2 − ℎ))/(𝜋 − 2(𝜋/2 − ℎ) ) = lim┬(h→0) (𝑘 sinℎ)/(𝜋 − 𝜋 + 2ℎ ) = lim┬(h→0) (𝑘 sinℎ)/(2ℎ ) = k/2 (𝒍𝒊𝒎)┬(𝐡→𝟎) 𝐬𝐢𝐧𝒉/(𝒉 ) = 𝑘/2 × 1 = 𝒌/𝟐 RHL at x → 𝝅/𝟐 (𝑙𝑖𝑚)┬(𝑥→〖𝜋/2〗^+ ) 𝑓(𝑥) = (𝑙𝑖𝑚)┬(ℎ→0) 𝑓(𝜋/2+ℎ) = lim┬(h→0) (𝑘 cos(𝜋/2 + ℎ))/(𝜋 − 2(𝜋/2 + ℎ) ) = lim┬(h→0) (𝑘 〖(−sin〗ℎ))/(𝜋 − 𝜋 − 2ℎ ) = lim┬(h→0) (−𝑘 sinℎ)/(−2ℎ ) = k/2 (𝒍𝒊𝒎)┬(𝐡→𝟎) 𝒔𝒊𝒏𝒉/(𝒉 ) = 𝑘/2 × 1 = 𝑘/2 And 𝑓(𝜋/2) = 3 Now, L.H.L = R.H.L = 𝑓(𝜋/2) 𝑘/2 = 𝑘/2 = 3 Hence, 𝑘/2 = 3 k = 3 × 2 k = 6 Hence, k = 6