Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important You are here
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
Last updated at April 16, 2024 by Teachoo
Ex 5.1, 26 Find the values of k so that the function f is continuous at the indicated point π(π₯)={β((π cosβ‘π₯)/(π β 2π₯ ) , ππ π₯β π/2@& 3, ππ π₯=π/2)β€ at π₯ = π/2 Given that function is continuous at π₯ =π/2 π is continuous at =π/2 if L.H.L = R.H.L = π(π/2) i.e. limβ¬(xβγπ/2γ^β ) π(π₯)=limβ¬(xβγπ/2γ^+ ) " " π(π₯)= π(π/2) LHL at x β π /π (πππ)β¬(π₯βγπ/2γ^β ) π(π₯) = (πππ)β¬(ββ0) π(π/2ββ) = limβ¬(hβ0) (π cosβ‘(π/2 β β))/(π β 2(π/2 β β) ) = limβ¬(hβ0) (π sinβ‘β)/(π β π + 2β ) = limβ¬(hβ0) (π sinβ‘β)/(2β ) = k/2 (πππ)β¬(π‘βπ) π¬π’π§β‘π/(π ) = π/2 Γ 1 = π/π RHL at x β π /π (πππ)β¬(π₯βγπ/2γ^+ ) π(π₯) = (πππ)β¬(ββ0) π(π/2+β) = limβ¬(hβ0) (π cosβ‘(π/2 + β))/(π β 2(π/2 + β) ) = limβ¬(hβ0) (π γ(βsinγβ‘β))/(π β π β 2β ) = limβ¬(hβ0) (βπ sinβ‘β)/(β2β ) = k/2 (πππ)β¬(π‘βπ) πππβ‘π/(π ) = π/2 Γ 1 = π/2 And π(π/2) = 3 Now, L.H.L = R.H.L = π(π/2) π/2 = π/2 = 3 Hence, π/2 = 3 k = 3 Γ 2 k = 6 Hence, k = 6