Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 5.1

Ex 5.1 ,1

Ex 5.1 ,2

Ex 5.1, 3 (a)

Ex 5.1, 3 (b)

Ex 5.1, 3 (c) Important

Ex 5.1, 3 (d) Important

Ex 5.1 ,4

Ex 5.1 ,5 Important

Ex 5.1 ,6

Ex 5.1 ,7 Important

Ex 5.1 ,8

Ex 5.1, 9 Important

Ex 5.1, 10

Ex 5.1, 11

Ex 5.1, 12 Important

Ex 5.1, 13

Ex 5.1, 14

Ex 5.1, 15 Important

Ex 5.1, 16

Ex 5.1, 17 Important

Ex 5.1, 18 Important You are here

Ex 5.1, 19 Important

Ex 5.1, 20

Ex 5.1, 21

Ex 5.1, 22 (i) Important

Ex 5.1, 22 (ii)

Ex 5.1, 22 (iii)

Ex 5.1, 22 (iv) Important

Ex 5.1, 23

Ex 5.1, 24 Important

Ex 5.1, 25

Ex 5.1, 26 Important

Ex 5.1, 27

Ex 5.1, 28 Important

Ex 5.1, 29

Ex 5.1, 30 Important

Ex 5.1, 31

Ex 5.1, 32

Ex 5.1, 33

Ex 5.1, 34 Important

Last updated at May 29, 2023 by Teachoo

Ex 5.1, 18 For what value of Ξ» is the function defined by π(π₯)={β("Ξ»" (π₯^2β2π₯), ππ π₯β€0@&4π₯+1, ππ π₯>0)β€ continuous at x = 0? What about continuity at x = 1? At x = 0 f(x) is continuous at π₯ =0 if L.H.L = R.H.L = π(0) if if limβ¬(xβ0^β ) π(π₯) = limβ¬(xβ0^+ ) π(π₯) = π(0) Since there are two different functions on the left & right of 3, we take LHL & RHL . LHL at x β 0 limβ¬(xβ3^β ) f(x) = limβ¬(hβ0) f(0 β h) = limβ¬(hβ0) f(βh) = limβ¬(hβ0) "Ξ»" (γ(ββ)γ^2β2(ββ)) = "Ξ»" (02+2(0)) = "Ξ» (0)" = 0 RHL at x β 3 limβ¬(xβ3^+ ) f(x) = limβ¬(hβ0) f(0 + h) = limβ¬(hβ0) f(h) = limβ¬(hβ0) 4β+1 = 4 Γ 0 + 1 = 0 + 1 = 1 Since L.H.L β R.H.L β΄ f(x) is not continuous at x = 0. So, for any value of "Ξ»"βπ, f is discontinuous at x = 0 When x = 1 For x > 1, f(x) = 4x + 1 Since this a polynomial It is continuous β΄ f(x) is continuous for x = 1 Thus, we can write that for any value of "Ξ»"βπ, f is continuous at x = 1