
Β
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a) You are here
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
Last updated at May 29, 2023 by Teachoo
Ex 5.1, 3 Examine the following functions for continuity. (a) f(x) = x β 5 f(x) = x β 5 To check continuity of π(π₯), We check itβs if it is continuous at any point x = c Let c be any real number f is continuous at π₯ =π if (π₯π’π¦)β¬(π±βπ) π(π)=π(π) (πππ)β¬(π±βπ) π(π) = limβ¬(xβπ) π₯ β 5 = c β 5 π(π) = c β 5 Since, L.H.S = R.H.S β΄ Function is continuous at x = c Thus, we can write that f is continuous for x = c , where c βπ β΄ f is continuous for every real number.