Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 5.1

Ex 5.1 ,1

Ex 5.1 ,2

Ex 5.1, 3 (a)

Ex 5.1, 3 (b)

Ex 5.1, 3 (c) Important

Ex 5.1, 3 (d) Important

Ex 5.1 ,4

Ex 5.1 ,5 Important

Ex 5.1 ,6

Ex 5.1 ,7 Important

Ex 5.1 ,8

Ex 5.1, 9 Important

Ex 5.1, 10

Ex 5.1, 11

Ex 5.1, 12 Important

Ex 5.1, 13

Ex 5.1, 14

Ex 5.1, 15 Important

Ex 5.1, 16

Ex 5.1, 17 Important

Ex 5.1, 18 Important

Ex 5.1, 19 Important

Ex 5.1, 20 You are here

Ex 5.1, 21

Ex 5.1, 22 (i) Important

Ex 5.1, 22 (ii)

Ex 5.1, 22 (iii)

Ex 5.1, 22 (iv) Important

Ex 5.1, 23

Ex 5.1, 24 Important

Ex 5.1, 25

Ex 5.1, 26 Important

Ex 5.1, 27

Ex 5.1, 28 Important

Ex 5.1, 29

Ex 5.1, 30 Important

Ex 5.1, 31

Ex 5.1, 32

Ex 5.1, 33

Ex 5.1, 34 Important

Last updated at May 29, 2023 by Teachoo

Ex 5.1, 20 Is the function defined by f (x) = 𝑥^2 – sin x + 5 continuous at x = π? f (x) = 𝑥^2 – sin x + 5 Let 𝑝(𝑥)=𝑥^2 , 𝑞(𝑥)="sin x " & 𝑟(𝑥) = 5 𝒑(𝒙) = 𝑥^2 is continuous as it is a polynomial 𝒒(𝒙)" = sin x" is continuous at all real numbers 𝒓(𝒙) = 5 is continuous as it is a constant function By Algebra of continuous functions, If 𝑝(𝑥)" ", 𝑞(𝑥) & 𝑟(𝑥) all are continuous at all real numbers then 𝒇(𝒙)= 𝒑(𝒙)−𝒒(𝒙)+𝒓(𝒙) is continuous at "all real numbers" ∴ 𝑓(𝑥) = 𝑥^2 " – sin x + 5" is continuous at all real numbers. Thus, 𝑓(𝑥) is continuous at 𝒙=𝝅 Ex 5.1, 20 (Method 1) Is the function defined by f (x) = 𝑥2 – sin x + 5 continuous at x = π? f (x) = 𝑥2 – sin x + 5 We need to check continuity at 𝑥=𝜋 We know that A function f is continuous at 𝑥=𝜋 i.e. limx→𝜋 𝑓 𝑥=𝑓 𝜋 Thus limx→𝜋 𝑓 𝑥=𝑓 𝑐 ⇒ f is continuous at 𝒙=𝝅 Ex 5.1, 20 (Method 2) Is the function defined by f (x) = 𝑥2 – sin x + 5 continuous at x = π? f (x) = 𝑥2 – sin x + 5 Let 𝑝 𝑥= 𝑥2 , 𝑞 𝑥=sin x & 𝑟 𝑥 = 5 𝑝 𝑥 = 𝑥2 is continuous as it is a polynomial 𝑞 𝑥=sin x is continuous at all real numbers 𝑟 𝑥 = 5 is continuous as it is a constant function By Algebra of continuous function, If 𝑝 𝑥 , 𝑞 𝑥 & 𝑟 𝑥 all are continuous at all real numbers then 𝑓 𝑥= 𝑝 𝑥−𝑞 𝑥+𝑟 𝑥 is continuous at all real numbers ∴ 𝑓 𝑥 = 𝑥2 – sin x + 5 is continuous at all real numbers. ⇒ f is continuous at 𝒙=𝝅