Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29 You are here
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
Last updated at April 16, 2024 by Teachoo
Ex 5.1, 29 Find the values of k so that the function f is continuous at the indicated point π(π₯)={β(ππ₯+1, ππ π₯β€5@3π₯β5, ππ π₯>5)β€ at x = 5 Given that function is continuous at π₯ =5 π is continuous at π₯ =5 if L.H.L = R.H.L = π(5) i.e. limβ¬(xβ5^β ) π(π₯)=limβ¬(xβ5^+ ) " " π(π₯)= π(5) LHL at x β 5 (πππ)β¬(π₯β5^β ) f(x) = (πππ)β¬(ββ0) f(5 β h) = limβ¬(hβ0) k(5 β h) + 1 = k(5 β 0) + 1 = 5k + 1 RHL at x β 5 (πππ)β¬(π₯β5^+ ) f(x) = (πππ)β¬(ββ0) f(5 + h) = limβ¬(hβ0) 3(5 + h) β 5 = 3(5 + 0) β 5 = 3 Γ 5 β 5 = 15 β 5 = 10 Since L.H.L = R.H.L 5k + 1 = 10 5k = 10 β 1 5k = 9 π= π/π