Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Last updated at Jan. 3, 2020 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Transcript
Ex 5.1, 29 Find the values of k so that the function f is continuous at the indicated point π(π₯)={β(ππ₯+1, ππ π₯β€5@3π₯β5, ππ π₯>5)β€ at x = 5 Given that function is continuous at π₯ =5 π is continuous at π₯ =5 If L.H.L = R.H.L = π(5) i.e. limβ¬(xβ5^β ) π(π₯)=limβ¬(xβ5^+ ) " " π(π₯)= π(5) LHL at x β 5 (πππ)β¬(π₯β5^β ) f(x) = (πππ)β¬(ββ0) f(5 β h) = limβ¬(hβ0) k(5 β h) + 1 = k(5 β 0) + 1 = 5k + 1 RHL at x β 5 (πππ)β¬(π₯β5^+ ) f(x) = (πππ)β¬(ββ0) f(5 + h) = limβ¬(hβ0) 3(5 + h) β 5 = 3(5 + 0) β 5 = 3 Γ 5 β 5 = 15 β 5 = 10 Since L.H.L = R.H.L 5k + 1 = 10 5k = 10 β 1 5k = 9 π= π/π
Ex 5.1
Ex 5.1 ,2
Ex 5.1 ,3 Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29 You are here
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
About the Author