Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 5.1

Ex 5.1 ,1

Ex 5.1 ,2

Ex 5.1, 3 (a)

Ex 5.1, 3 (b)

Ex 5.1, 3 (c) Important You are here

Ex 5.1, 3 (d) Important

Ex 5.1 ,4

Ex 5.1 ,5 Important

Ex 5.1 ,6

Ex 5.1 ,7 Important

Ex 5.1 ,8

Ex 5.1, 9 Important

Ex 5.1, 10

Ex 5.1, 11

Ex 5.1, 12 Important

Ex 5.1, 13

Ex 5.1, 14

Ex 5.1, 15 Important

Ex 5.1, 16

Ex 5.1, 17 Important

Ex 5.1, 18 Important

Ex 5.1, 19 Important

Ex 5.1, 20

Ex 5.1, 21

Ex 5.1, 22 (i) Important

Ex 5.1, 22 (ii)

Ex 5.1, 22 (iii)

Ex 5.1, 22 (iv) Important

Ex 5.1, 23

Ex 5.1, 24 Important

Ex 5.1, 25

Ex 5.1, 26 Important

Ex 5.1, 27

Ex 5.1, 28 Important

Ex 5.1, 29

Ex 5.1, 30 Important

Ex 5.1, 31

Ex 5.1, 32

Ex 5.1, 33

Ex 5.1, 34 Important

Last updated at May 29, 2023 by Teachoo

Ex 5.1, 3 Examine the following functions for continuity. (c) f (x) = (𝑥^(2 )− 25 )/(𝑥 + 5), x ≠ –5 f (x) = (𝑥^(2 )− 25 )/(𝑥 + 5) Putting x = –5 f (−5) = (〖(−5)〗^(2 )− 25 )/(−5 + 5) = (25− 25 )/(−5 + 5) = 0/0 = Undefined Hence, f(x) is not defined at x = −5 So, we check for continuity at all points except −5 Let c be any real number except −5. f is continuous at 𝑥 = 𝑐 if (𝐥𝐢𝐦)┬(𝐱→𝒄) 𝒇(𝒙) = 𝒇(𝒄) LHS (𝐥𝐢𝐦)┬(𝐱→𝒄) 𝒇(𝒙) = lim┬(x→𝑐) (𝑥^2− 25)/(𝑥 + 5) = lim┬(x→𝑐) ((𝑥 − 5) (𝑥 + 5))/(𝑥 + 5) = lim┬(x→𝑐) 𝑥−5 Putting x = c = c − 5 RHS f (c) = (𝑐^(2 )− 25 )/(𝑐 + 5) = ((𝑐 − 5)(𝑐 + 5))/((𝑐 + 5)) = c − 5 Let c be any real number except −5. f is continuous at 𝑥 = 𝑐 if (𝐥𝐢𝐦)┬(𝐱→𝒄) 𝒇(𝒙) = 𝒇(𝒄) Since, L.H.S = R.H.S ∴ Function is continuous at x = c (except −5) Thus, we can write that f is continuous for all real numbers except −5 ∴ f is continuous at each 𝐱 ∈ R − {−𝟓}