

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important You are here
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
Last updated at May 29, 2023 by Teachoo
Ex 5.1, 5 Is the function f defined by 𝑓(𝑥)={█(𝑥, 𝑖𝑓 𝑥≤1@&5, 𝑖𝑓 𝑥>1)┤ continuous at 𝑥 = 0 ? At 𝑥 = 1 ? At 𝑥 = 2 ? Given 𝑓(𝑥)={█(𝑥, 𝑖𝑓 𝑥≤1@&5, 𝑖𝑓 𝑥>1)┤ At x = 0 For x = 0, f(x) = x Since this a polynomial It is continuous ∴ f(x) is continuous for x = 0 At x = 1 f(x) is continuous at 𝑥 =1 if L.H.L = R.H.L = 𝑓(1) if lim┬(x→1^− ) 𝑓(𝑥)=lim┬(x→1^+ ) " " 𝑓(𝑥)= 𝑓(1) 𝑓(𝑥)={█(𝑥, 𝑖𝑓 𝑥≤1@&5, 𝑖𝑓 𝑥>1)┤ Since there are two different functions on the left & right of 1, we take LHL & RHL . LHL at x → 1 lim┬(x→1^− ) f(x) = lim┬(h→0) f(1 − h) = lim┬(h→0) (1−ℎ) = 1 − 0 = 1 RHL at x → 1 lim┬(x→1^+ ) f(x) = lim┬(h→0) f(1 + h) = lim┬(h→0) 5 = 5 Since L.H.L ≠ R.H.L f(x) is not continuous at x = 1 At x = 2 For x = 2, f(x) = 5 Since this a constant function It is continuous ∴ f(x) is continuous for x = 2