
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27 You are here
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
Last updated at May 29, 2023 by Teachoo
Ex 5.1, 27 Find the values of k so that the function f is continuous at the indicated point π(π₯)={β(ππ₯2 , ππ π₯β€2@3, ππ π₯>2)β€ at x = 2Given that function is continuous at π₯ = 2 π is continuous at π₯ = 2 if L.H.L = R.H.L = π(2) i.e. limβ¬(xβ2^β ) π(π₯)=limβ¬(xβ2^+ ) " " π(π₯)= π(2) LHL at x β 2 limβ¬(xβ2^β ) f(x) = limβ¬(hβ0) f(2 β h) = limβ¬(hβ0) γπ(2ββ)γ^2 = γπ(2β0)γ^2 = γπ(2)γ^2 = ππ RHL at x β 2 limβ¬(xβ2^+ ) f(x) = limβ¬(hβ0) f(2 + h) = limβ¬(hβ0) 3 = 3 RHL at x β 2 limβ¬(xβ2^+ ) f(x) = limβ¬(hβ0) f(2 + h) = limβ¬(hβ0) 3 = 3 RHL at x β 2 limβ¬(xβ2^+ ) f(x) = limβ¬(hβ0) f(2 + h) = limβ¬(hβ0) 3 = 3 RHL at x β 2 limβ¬(xβ2^+ ) f(x) = limβ¬(hβ0) f(2 + h) = limβ¬(hβ0) 3 = 3 Since LHL = RHL 4k = 3 k = π/π