Ex 5.1, 4 - Prove that f(x) = xn is continuous at x = n - Ex 5.1 Ex 5.1 ,4 - Chapter 5 Class 12 Continuity and Differentiability - Part 2

Share on WhatsApp

πŸŽ‰ Smart choice! You just saved 2+ minutes of ads and got straight to the good stuff. That's what being a Teachoo Black member is all about.


Transcript

Ex 5.1, 4 Prove that the function f (x) = π‘₯^𝑛 is continuous at x = n, where n is a positive integer.𝑓(π‘₯) is continuous at x = n if lim┬(x→𝑛) 𝑓(π‘₯)= 𝑓(𝑛) Since, L.H.S = R.H.S ∴ Function is continuous at x = n (π₯𝐒𝐦)┬(𝐱→𝒏) 𝒇(𝒙) = lim┬(x→𝑛) π‘₯^𝑛 Putting π‘₯=𝑛 = 𝑛^𝑛 𝒇(𝒏) = 𝑛^𝑛 ∴ Thus lim┬(x→𝑛) f(x) = f(n) Hence, f(x) = xn is continuous at x = n

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo