Question 3 (Supplementary NCERT) - Examples - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 3 (Supplementary NCERT) ∫1▒𝑥 √(1+𝑥−𝑥^2 ) 𝑑𝑥 ∫1▒𝑥 √(1+𝑥−𝑥^2 ) 𝑑𝑥 We can write it as:- x = A [𝑑/𝑑𝑥 (1+𝑥−𝑥^2 )]+ B x = A [0+1−2𝑥]+ B x = A [1−2𝑥]+ B x = "A"−2"A" 𝑥+ B x = −2"A" 𝑥+(𝐴+𝐵) Comparing x and constant term Thus, we can write x = A [1−2𝑥] + B x = ((−1)/2)[1−2𝑥] + 1 x = (−2A) x 𝑥/𝑥 = −2A 1 = −2A A = (−1)/2 0 = A + B B = −A B = −((−1)/2) B = 1/2 Integrating ∫1▒〖𝑥√(1+𝑥−𝑥^2 ) 〗 𝑑𝑥 = ∫1▒〖[(−1/2)[1−2𝑥]+1/2] 〗 √(1+𝑥−𝑥^2 ) 𝑑𝑥 = ∫1▒〖[(−1/2)[1 −2𝑥] √(1+𝑥−𝑥^2 )+1/2 √(1+𝑥−𝑥^2 )] 〗 𝑑𝑥 = ∫1▒〖(−1/2)[1−2𝑥] √(1+𝑥−𝑥^2 ) 𝑑𝑥+〗 ∫1▒〖1/2 √(1−𝑥−𝑥^2 )〗 𝑑𝑥 = −1/2 ∫1▒〖[1−2𝑥] √(1+𝑥−𝑥^2 ) 𝑑𝑥+〗 1/2 ∫1▒√(1+𝑥−𝑥^2 ) 𝑑𝑥 Solving 𝑰_𝟏 I_1 = (−1)/2 ∫1▒〖[1−2𝑥] √(1+𝑥−𝑥^2 )〗 𝑑𝑥 Let 1 + 𝑥 − 𝑥^2 = t Diff. both sides w.r.t.x 0 + 1 −2x = 𝑑𝑡/𝑑𝑥 (1 − 2x) dx = dt dx = 𝑑𝑡/(1 − 2𝑥) Thus, our equation becomes I_1 = (−1)/2 ∫1▒〖[1−2𝑥] √(1+𝑥−𝑥^2 )〗 𝑑𝑥 Putting the value if (1+𝑥−𝑥^2) and dx, we get I_1 = (−1)/2 ∫1▒〖[1−2𝑥] √𝑡〗. 𝑑𝑥 I_1 = (−1)/2 ∫1▒〖[1−2𝑥] √𝑡〗. 𝑑𝑡/[1 − 2𝑥] 𝐼_1 = (−1)/2 ∫1▒√𝑡. 𝑑𝑡 I_1 = (−1)/2 ∫1▒〖(𝑡)〗^(1/2) 𝑑𝑡 I_1 = (−1)/2 〖𝑡 〗^(1/2 + 1)/((1/2 + 1) )+ C_1 I_1 = (−1)/2 〖𝑡 〗^(3/2 )/((3/2) )+ C_1 I_1 = (−1)/3 〖𝑡 〗^(3/2 )+ C_1 I_1 = (−1)/3 〖(1−𝑥 −𝑥^2 ) 〗^(3/2 )+ C_1 ("Using t = " 1−𝑥 −𝑥^2 ) Solving 𝑰_𝟐 I_2 = 1/2 ∫1▒√(1+𝑥−𝑥^2 ) 𝑑𝑥 I_2 = 1/2 ∫1▒√(−(𝑥^2−𝑥−1)) 𝑑𝑥 I_2 = 1/2 ∫1▒√(−[𝑥^2−2(𝑥)(1/2)−1] ) 𝑑𝑥 I_2 = 1/2 ∫1▒〖√(−[𝑥^2−2(𝑥)(1/2)+(1/2)^2−(1/2)^2−1] ) 〗 𝑑𝑥 I_2 = 1/2 ∫1▒〖√(−[(𝑥−1/2)^2−(1/2)^2−1] ) 〗 𝑑𝑥 I_2 = 1/2 ∫1▒〖√(−[〖 (𝑥−1/2)〗^2+(−1 −4)/4] ) 〗 𝑑𝑥 I_2 = 1/2 ∫1▒〖√(−[〖 (𝑥−1/2)〗^2 −5/4] ) 〗 𝑑𝑥 I_2 = 1/2 ∫1▒〖√(5/4 〖 −(𝑥−1/2)〗^2 ) 〗 𝑑𝑥 I_2 = 1/2 ∫1▒〖√((√5/4)^2 〖 −(𝑥−1/2)〗^2 ) 〗 𝑑𝑥 I_2 = 1/2 ((𝑥 − 1/2)/2 √((√5/4)^2 〖 −(𝑥−1/2)〗^2 )+(√5/2)^2/2 〖𝑠𝑖𝑛〗^(−1) ((𝑥 + 1/2)/(√5/2))+ C_2 ) I_2 = 1/2 (((2𝑥 −1)/2)/2 √(5/4−[𝑥^2 +1/4−2𝑥(1/2)] ) +(5/4)/2 〖𝑠𝑖𝑛〗^(−1) (((2𝑥 − 1)/2)/(√5/2))+ C_2 ) It is of form √(𝑎^2−𝑥^2 ) 𝑑𝑥=1/2 𝑥√(𝑎^2−𝑥^2 )+𝑎^2/2 〖𝑠𝑖𝑛〗^(−1) 𝑥/𝑎+ C_2 Replacing x by (x – 1/2) and a by √5/2 , we get I_2 = 1/2 ((2𝑥 −1)/4 √(5/4−[𝑥^2 +1/4 −𝑥] ) +5/8 〖𝑠𝑖𝑛〗^(−1) ((2𝑥 − 1)/√5)+ C_2 ) I_2 " = " (2𝑥 −1)/8 √(1+𝑥+𝑥^2 ) +5/16 〖𝑠𝑖𝑛〗^(−1) ((2𝑥 − 1)/√5)+C_3 Putting the value of I_1 and I_2 in (1) ∫1▒𝑥 √(1+ 𝑥−𝑥^2 ) d𝑥 = (−1)/2 ∫1▒〖[1−2𝑥] √(1+𝑥−𝑥^2 )〗 𝑑𝑥+∫1▒√(1+𝑥−𝑥^2 ) 𝑑𝑥 = (−1)/3 〖(1+𝑥−𝑥^2)〗^(3/2) + C_1 + ((2𝑥 −1))/8 √(1+𝑥−𝑥^2 )+5/16 〖𝑠𝑖𝑛〗^(−1) ((2𝑥 − 1)/√5)+ C_3 = (−𝟏)/𝟑 〖(𝟏+𝒙−𝒙^𝟐)〗^(𝟑/𝟐) +𝟏/𝟖 (𝟐𝒙 −𝟏) √(𝟏+𝒙−𝒙^𝟐 )+ 𝟓/𝟏𝟔 〖𝒔𝒊𝒏〗^(−𝟏) ((𝟐𝒙 − 𝟏)/√𝟓)+ 𝑪
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii) Important
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 (i)
Example 25 (ii) Important
Example 25 (iii)
Example 25 (iv) Important
Example 26
Example 27
Example 28 Important
Example 29
Example 30
Example 31
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37 Important
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Question 1 Important
Question 2
Question 3 (Supplementary NCERT) Important You are here
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo