Example 42 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Example 42 Evaluate โซ_0^๐โ(๐ฅ ๐๐ฅ)/(๐^2 cos^2โกใ๐ฅ + ๐^2 ใ sin^2โก๐ฅ )Let I= โซ_0^๐โใ๐ฅ/(๐^2 ๐๐๐ ^2 ๐ฅ + ๐^2 ๐ ๐๐^2 ๐ฅ) ๐๐ฅใ โด I=โซ_0^๐โใ((๐ โ ๐ฅ))/(๐^2 ๐๐๐ ^2 (๐ โ ๐ฅ) + ๐^2 ๐ ๐๐^2 (๐ โ ๐ฅ) ) ๐๐ฅใ I=โซ_0^๐โใ(๐ โ ๐ฅ)/(๐^2 [๐๐๐ (๐ โ ๐ฅ)]^2 + ๐^2 [๐ ๐๐(๐ โ ๐ฅ)]^2 ) ๐๐ฅใ I=โซ_0^๐โใ(๐ โ ๐ฅ)/(๐^2 [โ ๐๐๐ ๐ฅ]^2 + ๐^2 [๐ ๐๐ ๐ฅ]^2 ) ๐๐ฅใ I=โซ_0^๐โใ(๐ โ ๐ฅ)/(๐^2 cos^2โก๐ฅ + ๐^2 sin^2โก๐ฅ ) ๐๐ฅใ Adding (1) and (2) i.e. (1) + (2) I+I=โซ_0^๐โใ๐ฅ/(๐^2 cos^2โก๐ฅ + ๐^2 sin^2โก๐ฅ ) ๐๐ฅใ+โซ1โ(๐ โ ๐ฅ)/(๐^2 cos^2โก๐ฅ + ๐^2 sin^2โก๐ฅ ) ๐๐ฅ 2I=โซ_0^๐โ(๐ฅ + ๐ โ ๐ฅ)/(๐^2 cos^2โก๐ฅ + ๐^2 sin^2โก๐ฅ ) ๐๐ฅ 2I=โซ_0^๐โ(๐ )/(๐^2 cos^2โก๐ฅ + ๐^2 sin^2โก๐ฅ ) ๐๐ฅ I=๐/2 โซ_0^๐โใ1/(๐^2 cos^2โก๐ฅ + ๐^2 sin^2โก๐ฅ ) ๐๐ฅใ Dividing numerator and denominator by ๐๐๐ ^2 ๐ฅ, we get I=๐/2 โซ_0^๐โใ(1/cos^2โก๐ฅ )/((๐^2 cos^2โกใ๐ฅ + ๐^2 sin^2โก๐ฅ ใ)/cos^2โก๐ฅ ) ๐๐ฅใ I=๐/2 โซ_0^๐โใ(๐ ๐๐^2 ๐ฅ)/((๐^2 cos^2โก๐ฅ)/cos^2โก๐ฅ + (๐^2 sin^2โก๐ฅ)/cos^2โก๐ฅ ) ๐๐ฅใ I=๐/2 โซ_0^๐โใ(๐ ๐๐^2 ๐ฅ)/(๐^2 + ๐^2 tan^2โก๐ฅ ) ๐๐ฅใ Let ๐(๐ฅ)=sec^2โก๐ฅ/(๐^2 + ๐^2 tan^2โก๐ฅ ) and a = ฯ Now, ๐(2๐โ๐ฅ)=sec^2โก(๐ โ ๐ฅ)/(๐^2 + ๐^2 tan^2โก(๐ โ ๐ฅ) ) ๐(2๐โ๐ฅ)=[โ๐ ๐๐ ๐ฅ]^2/(๐^2 + ๐^2 [โtanโก๐ฅ ]^2 ) ๐(2๐โ๐ฅ)=(๐ ๐๐^2 ๐ฅ)/(๐^2 + ๐^2 tan^2โก๐ฅ ) Therefore, ๐(๐ฅ)=๐(2๐โ๐ฅ) Therefore, I=๐/2 โซ_0^๐โใ(๐ ๐๐^2 ๐ฅ)/(๐^2 + ๐^2 tan^2โก๐ฅ ) ๐๐ฅใ =๐/2 ร 2 โซ_0^(๐/2)โใ(๐ ๐๐^2 ๐ฅ)/(๐^2 + ๐^2 tan^2โก๐ฅ ) ๐๐ฅใ =๐โซ_0^(๐/2)โใ(๐ ๐๐^2 ๐ฅ)/(๐^2 + ๐^2 tan^2โก๐ฅ ) ๐๐ฅใ Let ๐ tanโกใ๐ฅ=๐กใ Differentiating both sides w.r.t. ๐ฅ ๐ ๐ ๐๐^2 ๐ฅ ๐๐ฅ=๐๐ก ๐๐ก=๐๐ก/(๐^2 ๐ ๐๐^2 ๐ฅ) Putting the values of tan ๐ฅ and ๐๐ฅ , we get ๐ผ=๐โซ1_0^(๐/2)โใ(๐ ๐๐^2 ๐ฅ)/(๐^2 + ๐ก^2 ) . ๐๐ฅใ ๐ผ=๐ โซ1_0^โโใ(๐ ๐๐^2 ๐ฅ)/(๐^2 + ๐ก^2 ) .๐๐ก/(๐ ๐ ๐๐^2 ๐ฅ)ใ ๐ผ=๐/๐ โซ1_0^โโ๐๐ก/(๐^2 + ๐ก^2 ) ๐ผ= ใ๐/๐ [1/๐ tan^(โ1)โก(๐ก/๐) ]ใ_0^โ Putting limits, I=๐/๐ [1/๐ ใ๐ก๐๐ใ^(โ1) (โ/๐)โ1/๐ ใ๐ก๐๐ใ^(โ1) (0/๐)] I =๐/๐ [ใ1/๐ tan^(โ1)ใโกใ(โ)โ1/๐ tan^(โ1)โก(0) ใ ] I =๐/๐ (1/๐ (๐/2)โ0) I =๐ ^๐/๐๐๐
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii) Important
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 (i)
Example 25 (ii) Important
Example 25 (iii)
Example 25 (iv) Important
Example 26
Example 27
Example 28 Important
Example 29
Example 30
Example 31
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37 Important
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important You are here
Question 1 Important
Question 2
Question 3 (Supplementary NCERT) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo