Check sibling questions


Transcript

Example 37 Evaluate ∫1▒(𝑥^4 𝑑𝑥)/(𝑥 −1)(𝑥^2 + 1) Let I = ∫1▒(𝑥^4 𝑑𝑥)/(𝑥 −1)(𝑥^2 + 1) 𝑑𝑥 We can write 𝑥^4/(𝑥 −1)(𝑥^2 + 1) = 𝑥^4/(𝑥^3 − 𝑥^2+ 𝑥 − 1) Dividing Numerator by denominator as follows. Hence 𝑥^4 = (𝑥^3−𝑥^2+𝑥+1) (𝑥+1)+1 Thus, 𝑥^4/(𝑥^3 − 𝑥^2 + 𝑥 + 1) = (𝑥+1)+1/(𝑥^3 − 𝑥^2 + 𝑥 + 1) = (𝑥+1)+1/((𝑥 − 1) (𝑥^2 +1) ) Now, we can write 1/((𝑥^2 + 1) (𝑥 − 1) )= (𝐴𝑥 + 𝐵)/(𝑥^2 + 1) + 𝐶/(𝑥 − 1) 1/((𝑥^2 + 1) (𝑥 − 1) )= ((𝐴𝑥 + 𝐵)(𝑥 − 1) + 𝐶 (𝑥^2 + 1))/((𝑥^2 + 1)(𝑥 −1)) Canceling denominator 1 = (𝐴𝑥 + 𝐵)(𝑥 − 1) + 𝐶 (𝑥^2 + 1) Putting x = 1 1 = (𝐴(1) + 𝐵)(1−1) + 𝐶 ((−1)^2 + 1) 1 = (𝐴+𝐵)(0)+ 𝐶 (1+1) 1 = 2𝐶 𝐶=1/2 Putting x = 0 1 = (𝐴𝑥 + 𝐵)(𝑥 − 1) + 𝐶 (𝑥^2 + 1) 1 = (𝐴(0) + 𝐵)(0−1) + 𝐶 (0^2+1) 1 = (𝐵)(−1) + 𝐶 (1) 1 = 𝐶 −"B" B =𝐶−1 B =1/2 −1 B =(−1)/2 Putting x = − 1 1 = (𝐴𝑥 + 𝐵)(𝑥 − 1) + 𝐶 (𝑥^2 + 1) 1 = (𝐴(−1)+ 𝐵)(−1−1) + 𝐶 ((−1)^2+1) 1 = (−𝐴+𝐵)(−2)+𝐶 (1+1) 1 = (𝐴−𝐵)2+𝐶 (2) 1/2=𝐴−𝐵+𝐶 𝐴=1/2+𝐵−𝐶 𝐴 =1/2−1/2−1/2 𝐴 =(−1)/2 Hence we can write 1/((𝑥^2 + 1) (𝑥 − 1) )= (𝐴𝑥 + 𝐵)/(𝑥^2 + 1) + 𝐶/(𝑥 − 1) 1/((𝑥^2 + 1) (𝑥 − 1) ) = (− 1/2 𝑥 − 1/2)/(𝑥^2 + 1) + (1/2)/(𝑥 − 1) = (−1)/2 ( 𝑥)/(𝑥^2 + 1) −1/2 1/(𝑥^2 + 1)+ 1/2(𝑥 − 1) Hence we can write 1/((𝑥^2 + 1) (𝑥 − 1) )= (𝐴𝑥 + 𝐵)/(𝑥^2 + 1) + 𝐶/(𝑥 − 1) 1/((𝑥^2 + 1) (𝑥 − 1) ) = (− 1/2 𝑥 − 1/2)/(𝑥^2 + 1) + (1/2)/(𝑥 − 1) = (−1)/2 ( 𝑥)/(𝑥^2 + 1) −1/2 1/(𝑥^2 + 1)+ 1/2(𝑥 − 1) Therefore, we can write I=∫1▒〖(𝑥+1)+1/(𝑥^2 + 1)(𝑥 − 1) 𝑑𝑥〗 =∫1▒[(𝑥+1)−1/2 𝑥/((𝑥^2 + 1) ) 𝑑𝑥−∫1▒〖1/2 1/(𝑥^2 + 1) 𝑑𝑥+∫1▒〖1/2 1/((𝑥 − 1) ) 𝑑𝑥〗〗] =𝑥^2/2+𝑥−1/2 ∫1▒〖𝑥/(𝑥^2 + 1)−1/2 ∫1▒〖1/(𝑥^2 + 1) 𝑑𝑥+1/2 ∫1▒〖1/(𝑥 − 1) 𝑑𝑥〗〗〗 ∴ I = 𝑥^2/2+𝑥 – 1/2 I"1 − " 1/2 I"2 + " 1/2 I"3" Solving 𝑰𝟏 I1=∫1▒〖𝑥/(𝑥^2 + 1) 𝑑𝑥〗 Put 𝑡=𝑥^2+1 Differentiating w.r.t. 𝑥 𝑑𝑡/𝑑𝑥=2𝑥+0 𝑑𝑡/2𝑥=𝑑𝑥 Therefore, ∫1▒〖(𝑥 𝑑𝑥)/(𝑥^2 + 1)=∫1▒𝑥/𝑡 𝑑𝑡/2𝑥〗=∫1▒1/2 𝑑𝑡/𝑡=1/2 𝑙𝑜𝑔|𝑡|+𝐶1 Putting 𝑡=𝑥^2+1 =1/2 𝑙𝑜𝑔|𝑥^2+1|+𝐶1 And, I2=∫1▒〖1/(𝑥^2 + 1) 𝑑𝑥〗=tan^(−1)⁡〖𝑥+〗 𝐶2 I3=∫1▒〖1/(𝑥 −1) 𝑑𝑥〗=𝑙𝑜𝑔|𝑥−1|+𝐶3 Hence 𝐼=𝑥^2/2+𝑥−1/2 𝐼1−1/2 𝐼2+1/2 𝐼3 =𝑥^2/2+𝑥−1/2 (1/2 𝑙𝑜𝑔|𝑥^2+1|+𝐶1)−1/2 (〖𝑡𝑎𝑛〗^(−1) (𝑥)+C_2 )−1/2 (𝑙𝑜𝑔|𝑥−1|+𝐶3) =𝑥^2/2+𝑥−1/4 𝑙𝑜𝑔|𝑥^2+1|+𝐶1/2−1/2 tan^(−1)⁡〖𝑥 𝐶2/2+1/2 𝑙𝑜𝑔|𝑥−1|+𝐶3/2〗 =𝒙^𝟐/𝟐+𝒙+𝟏/𝟐 𝒍𝒐𝒈|𝒙−𝟏|−𝟏/𝟒 𝒍𝒐𝒈(𝒙^𝟐+𝟏)−𝟏/𝟐 〖𝒕𝒂𝒏〗^(−𝟏)⁡〖𝒙+𝑪〗

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo