Check sibling questions


Transcript

Question 2 Evaluate ∫_0^2▒𝑒^𝑥 𝑑𝑥 as the limit of a sum . ∫_0^2▒𝑒^𝑥 𝑑𝑥 Putting 𝑎 = 0 𝑏 = 2 ℎ = (𝑏 − 𝑎)/𝑛 = (2 − 0)/𝑛 = 2/𝑛 𝑓(𝑥)=𝑒^𝑥 We know that ∫1_𝑎^𝑏▒〖𝑥 𝑑𝑥〗 =(𝑏−𝑎) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(𝑎)+𝑓(𝑎+ℎ)+𝑓(𝑎+2ℎ)…+𝑓(𝑎+(𝑛−1)ℎ)) Hence we can write ∫_0^2▒𝑒^𝑥 𝑑𝑥 =(2−0) lim┬(n→∞) 1/𝑛 (𝑓(0)+𝑓(0+ℎ)+𝑓(0+2ℎ)+… +𝑓(0+(𝑛−1)ℎ) =2 lim┬(n→∞) 1/𝑛 (𝑓(0)+𝑓(ℎ)+𝑓(2ℎ)……+𝑓((𝑛−1)ℎ) Here, 𝑓(𝑥)=𝑒^𝑥 𝑓(0)=𝑒^0=1 𝑓(0+ℎ)=𝑒^(0 + ℎ)=𝑒^ℎ 𝑓(0+2ℎ)=𝑒^(0 + 2ℎ)=𝑒^2ℎ 𝑓(0+(𝑛−1)ℎ)=𝑒^(0 + (𝑛−1)ℎ)=𝑒^(𝑛−1)ℎ Hence, our equation becomes ∴ ∫_0^2▒𝑒^𝑥 𝑑𝑥 =2 lim┬(n→∞) 1/𝑛 (𝑓(0)+𝑓(ℎ)+𝑓(2ℎ)……+𝑓(𝑛−1)ℎ) = 2 .lim┬(n→∞) 1/𝑛 (1+𝑒^ℎ+𝑒^2ℎ+ ……+𝑒^((𝑛 − 1) ℎ) ) Let S = 𝑒^ℎ+𝑒^2ℎ+ ……+𝑒^((𝑛 − 1) ℎ) It is a G.P. with common ratio (r) r = 𝑒^2ℎ/𝑒^ℎ = 𝑒^(2ℎ − ℎ) = 𝑒^ℎ Sum of G.P. S = (𝑎 (1 − 𝑟^𝑛 ))/(1 − 𝑟) = (𝑒^ℎ (1 − (𝑒^ℎ )^𝑛 ))/(1 − 𝑒^ℎ ) = (𝑒^ℎ (1 − 𝑒^𝑛ℎ ))/(1 − 𝑒^ℎ ) = (2−0) lim┬(n→∞) 1/𝑛 (𝑓(0)+𝑓(0+ℎ)+𝑓(0+2ℎ)+……+𝑓(0+(𝑛−1)ℎ) = 2 .lim┬(n→∞) 1/𝑛 (1+𝑒^ℎ+𝑒^2ℎ+ ……+𝑒^((𝑛 − 1) ℎ) ) Let S = 𝑒^ℎ+𝑒^2ℎ+ ……+𝑒^((𝑛 − 1) ℎ) It is a G.P. with common ratio (r) r = 𝑒^2ℎ/𝑒^ℎ = 𝑒^(2ℎ − ℎ) = 𝑒^ℎ Sum of G.P. S = (𝑎 (1 − 𝑟^𝑛 ))/(1 − 𝑟) = (𝑒^ℎ (1 − (𝑒^ℎ )^𝑛 ))/(1 − 𝑒^ℎ ) = (𝑒^ℎ (1 − 𝑒^𝑛ℎ ))/(1 − 𝑒^ℎ ) Thus ∴ ∫_0^2▒𝑒^𝑥 𝑑𝑥 = 2 .lim┬(n→∞) 1/𝑛 (1+𝑒^ℎ+𝑒^2ℎ+ ……+𝑒^((𝑛 − 1) ℎ) ) Putting the value of S, we get = 2 .lim┬(n→∞) 1/𝑛 (1+ (𝑒^ℎ (1 − 𝑒^𝑛ℎ ))/(1 − 𝑒^ℎ )) = 2 (lim┬(n→∞) 1/𝑛 +lim┬(n→∞) 1/𝑛 (𝑒^ℎ ((1 − 𝑒^𝑛ℎ)/(1 − 𝑒^ℎ )))) "Taking −1 common from" "numerator and denominator " = 2 (1/∞ +lim┬(n→∞) (𝑒^ℎ/𝑛 . ( 𝑒^𝑛ℎ − 1)/(𝑒^ℎ − 1))) "Multiplying and dividing denominator by h" = 2 (0+lim┬(n→∞) (𝑒^ℎ/𝑛 . ( 𝑒^𝑛ℎ − 1)/(ℎ . ( 𝑒^ℎ − 1)/ℎ))) = 2 . lim┬(n→∞) 𝑒^ℎ/𝑛 (( 𝑒^𝑛ℎ − 1)/ℎ)(( 1)/(( 𝑒^ℎ − 1)/ℎ)) = 2 . lim┬(n→∞) 𝑒^ℎ/𝑛 (( 𝑒^𝑛ℎ − 1)/ℎ) . lim┬(n→∞) (( 1)/(( 𝑒^ℎ − 1)/ℎ)) Solving (𝐥𝐢𝐦)┬(𝐧→∞) ( 𝟏)/(( 𝒆^𝒉 − 𝟏)/𝒉) As n→∞ ⇒ 2/ℎ →∞ ⇒ ℎ →0 ∴ lim┬(n→∞) ( 1)/(( 𝑒^ℎ − 1)/ℎ) = lim┬(h→0) ( 1)/(( 𝑒^ℎ − 1)/ℎ) = 1/1 = 1 (𝑈𝑠𝑖𝑛𝑔 lim┬(t → 0) ( 𝑒^𝑡 − 1)/𝑡=1) Thus, our equation becomes ∴ ∫_0^2▒𝑒^𝑥 𝑑𝑥 = 2 . lim┬(n→∞) 𝑒^ℎ/𝑛 (( 𝑒^𝑛ℎ − 1)/ℎ) . lim┬(n→∞) (( 1)/(( 𝑒^ℎ − 1)/ℎ)) = 2 . lim┬(n→∞) 𝑒^ℎ/𝑛 (( 𝑒^𝑛ℎ − 1)/ℎ) . 1 = 2 . lim┬(n→∞) 𝑒^( 2/𝑛)/𝑛 (( 𝑒^(𝑛 . 2/𝑛) − 1)/(2/𝑛)) = 2 . lim┬(n→∞) 〖 𝑒〗^( 2/𝑛) (( 𝑒^2 − 1)/2) = 2 (𝑒^( 2/∞) ((𝑒^2 − 1))/2) (𝑈𝑠𝑖𝑛𝑔 ℎ= 2/𝑛) = 2 . 𝑒^0 ((𝑒^2 − 1))/2 = 2/2 . 1 (𝑒^2−1) = 1 . 1 (𝑒^2−1) = 𝒆^𝟐−𝟏

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo