Check sibling questions


Transcript

Example 22 Find (i) ∫1▒𝑒^𝑥 (tan^(−1)⁡𝑥+ 1/(1 + 𝑥^2 )) 𝑑𝑥 ∫1▒〖𝑒^𝑥 (tan^(−1)⁡𝑥+1/(1 + 𝑥^2 ))𝑑𝑥〗 It is of the form ∫1▒〖𝑒^𝑥 [𝑓(𝑥)+𝑓^′ (𝑥)] 〗 𝑑𝑥=𝑒^𝑥 𝑓(𝑥)+𝐶 Where 𝑓(𝑥)=tan^(−1)⁡𝑥 𝑓^′ (𝑥)= 1/(1 + 𝑥^2 ) So, our equation becomes ∫1▒〖𝑒^𝑥 (tan^(−1)⁡𝑥+1/(1 + 𝑥^2 ))𝑑𝑥〗=𝒆^𝒙 〖𝐭𝐚𝐧〗^(−𝟏)⁡〖𝒙+𝑪〗 Example 22 Find (ii) ∫1▒((𝑥^2 + 1) 𝑒^𝑥)/(𝑥 + 1)^2 𝑑𝑥 ∫1▒〖(𝑥^2 + 1)/(𝑥 + 1)^2 .𝑒^𝑥 𝑑𝑥〗 Adding and subtracting 1 in numerator =∫1▒〖(𝑥^2+ 1 + 1 − 1)/(𝑥 + 1)^2 .𝑒^𝑥 .𝑑𝑥〗 =∫1▒〖(𝑥^2 − 1 + 1 + 1)/(𝑥 + 1)^2 .𝑒^𝑥 .𝑑𝑥〗 =∫1▒〖[(𝑥^2 − 1)/(𝑥 + 1)^2 +2/(𝑥 + 1)^2 ] 𝑒^𝑥 𝑑𝑥〗 =∫1▒〖𝑒^𝑥 [(𝑥^2 − (1)^2)/(𝑥 + 1)^2 +2/(𝑥 + 1)^2 ]𝑑𝑥〗 =∫1▒〖𝑒^𝑥 [(𝑥 − 1)(𝑥 + 1)/(𝑥 + 1)^2 +2/(𝑥 + 1)^2 ]𝑑𝑥〗 =∫1▒〖𝑒^𝑥 [(𝑥 − 1)/(𝑥 + 1)+2/(𝑥 + 1)^2 ]𝑑𝑥〗 It is of form ∫1▒〖𝑒^𝑥 [𝑓(𝑥)+𝑓^′ (𝑥)] 〗 𝑑𝑥=𝑒^𝑥 𝑓(𝑥)+𝐶 Where 𝑓(𝑥)=(𝑥 − 1)/(𝑥 + 1) 𝑓^′ (𝑥)=𝑑/𝑑𝑥 [(𝑥 − 1)/(𝑥 + 1)] 𝑓^′ (𝑥)=(1.(𝑥 + 1) −1 (𝑥 − 1))/(𝑥 + 1)^2 =(𝑥 + 1 − 𝑥 + 1)/(𝑥 + 1)^2 =2/(𝑥 + 1)^2 Thus, our equation becomes ∫1▒〖(𝑥^2 + 1)/(𝑥 + 1)^2 .𝑒^𝑥=∫1▒〖𝑒^𝑥 [(𝑥 − 1)/(𝑥 + 1)+2/(𝑥 + 1)^2 ]𝑑𝑥〗〗 =𝑒^𝑥 [(𝑥 − 1)/(𝑥 + 1)]+𝐶 =(𝒙 − 𝟏)/(𝒙 + 𝟏).𝒆^𝒙+𝑪

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo