Check sibling questions


Transcript

Example 21 Find ∫1▒𝑒^π‘₯ sin⁑π‘₯ 𝑑π‘₯ Let I1 = ∫1β–’γ€– 𝑒^π‘₯ γ€— sin⁑π‘₯ 𝑑π‘₯ I1 = sin⁑π‘₯ ∫1▒〖𝑒^π‘₯ 𝑑π‘₯γ€—βˆ’βˆ«1β–’(𝑑(sin⁑π‘₯ )/𝑑π‘₯ ∫1▒〖𝑒^π‘₯ 𝑑π‘₯γ€—) 𝑑π‘₯ I1 = 𝑒^π‘₯ sin⁑π‘₯βˆ’βˆ«1β–’γ€–cos⁑π‘₯ . 𝑒^π‘₯ 𝑑π‘₯γ€— Now we know that ∫1▒〖𝑓(π‘₯) 𝑔⁑(π‘₯) γ€— 𝑑π‘₯=𝑓(π‘₯) ∫1▒𝑔(π‘₯) 𝑑π‘₯βˆ’βˆ«1β–’(𝑓′(π‘₯)∫1▒𝑔(π‘₯) 𝑑π‘₯) 𝑑π‘₯ Putting f(x) = sin x and g(x) = ex Solving I2 I2 = ∫1β–’γ€–cos⁑π‘₯ . 𝑒^π‘₯ 𝑑π‘₯γ€— I2 = cos x ∫1▒〖𝑒^π‘₯ 𝑑π‘₯γ€— – ∫1β–’γ€–((cos⁑π‘₯)β€²γ€— ∫1▒〖𝑒^π‘₯ 𝑑π‘₯γ€—)𝑑π‘₯ I2 = cos x 𝑒^π‘₯ – ∫1β–’γ€–(βˆ’sin⁑π‘₯)γ€— 𝑒^π‘₯ 𝑑π‘₯ I2 = 𝑒^π‘₯ cos x + ∫1β–’sin⁑π‘₯ 𝑒^π‘₯ 𝑑π‘₯ I2 = 𝑒^π‘₯ cos x + 𝐼1 Now we know that ∫1▒〖𝑓(π‘₯) 𝑔⁑(π‘₯) γ€— 𝑑π‘₯=𝑓(π‘₯) ∫1▒𝑔(π‘₯) 𝑑π‘₯βˆ’βˆ«1β–’(𝑓′(π‘₯)∫1▒𝑔(π‘₯) 𝑑π‘₯) 𝑑π‘₯ Putting f(x) = sin x and g(x) = ex Now, Putting value of I2 in (1) , I1 = " " 𝑒^π‘₯ sin⁑π‘₯βˆ’βˆ«1β–’γ€–cos⁑π‘₯ 𝑒^π‘₯ γ€— 𝑑π‘₯ I1 = " " 𝑒^π‘₯ sin⁑π‘₯βˆ’(𝑒^π‘₯ cos⁑π‘₯+𝐼1)+𝐢 I1 = " " 𝑒^π‘₯ sin⁑π‘₯βˆ’π‘’^π‘₯ cos⁑π‘₯βˆ’πΌ1+𝐢 2I1 = " " 𝑒^π‘₯ sin⁑π‘₯βˆ’π‘’^π‘₯ cos⁑π‘₯ + 𝐢 I1 = 1/2 (𝑒^π‘₯ sin⁑π‘₯βˆ’π‘’^π‘₯ cos⁑π‘₯ ) + C π‘°πŸ = 𝒆^𝒙/𝟐 (π’”π’Šπ’β‘π’™βˆ’π’„π’π’”β‘π’™ ) + C

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo