Check sibling questions


Transcript

Example 20 Find ∫1β–’(π‘₯ sin^(βˆ’1)⁑π‘₯)/√(1 βˆ’ π‘₯^2 ) 𝑑π‘₯ Example 20 Find ∫1β–’(π‘₯ sin^(βˆ’1)⁑π‘₯)/√(1 βˆ’ π‘₯^2 ) 𝑑π‘₯ ∫1β–’(π‘₯ sin^(βˆ’1)⁑π‘₯)/√(1 βˆ’ π‘₯^2 ) 𝑑π‘₯ Let t = 〖𝑠𝑖𝑛〗^(βˆ’1) (π‘₯) 𝑑𝑑/𝑑π‘₯=1/√(1 βˆ’ π‘₯^2 ) dt = 𝑑π‘₯/√(1 βˆ’ π‘₯^2 ) So, our equation becomes ∫1β–’(π‘₯ sin^(βˆ’1)⁑π‘₯)/√(1 βˆ’ π‘₯^2 ) 𝑑π‘₯ = ∫1β–’γ€–sin⁑〖𝑑×𝑑 〗×𝑑π‘₯/√(1 βˆ’ π‘₯^2 )γ€— = ∫1β–’γ€–sin⁑〖𝑑×𝑑 γ€— 𝑑𝑑〗 =𝑑 ∫1β–’γ€–sin⁑〖𝑑 𝑑𝑑 βˆ’ ∫1β–’(𝑑(𝑑))/𝑑𝑑〗 γ€— ∫1β–’sin⁑〖𝑑 𝑑𝑑 γ€— 𝑑𝑑 = t (βˆ’cos t) βˆ’ ∫1β–’(βˆ’cos⁑𝑑 ) 𝑑𝑑 = βˆ’ t cos t + ∫1β–’cos⁑𝑑 𝑑𝑑 = βˆ’t cos t + sin t + C Now we know that ∫1▒〖𝑓(π‘₯) 𝑔⁑(π‘₯) γ€— 𝑑π‘₯=𝑓(π‘₯) ∫1▒𝑔(π‘₯) 𝑑π‘₯βˆ’βˆ«1β–’(𝑓′(π‘₯)∫1▒𝑔(π‘₯) 𝑑π‘₯) 𝑑π‘₯ Putting f(x) = t and g(x) = sin t Hence we take First function :-f(x) = t Second function :- g(x) = sin t ∫1β–’γ€–sin⁑〖𝑑×𝑑 𝑑𝑑=𝑑 ∫1β–’γ€–sin⁑〖𝑑 𝑑𝑑 βˆ’ ∫1β–’(𝑑(𝑑))/𝑑𝑑〗 γ€—γ€— γ€— ∫1β–’sin⁑〖𝑑 𝑑𝑑 γ€— 𝑑𝑑 = t (βˆ’cost) βˆ’ ∫1β–’(βˆ’cos⁑𝑑 ) 𝑑𝑑 = βˆ’ t cost + ∫1β–’cos⁑𝑑 𝑑𝑑 = βˆ’t cost + sin t + C (∫1β–’sin⁑〖π‘₯ 𝑑π‘₯=βˆ’cos⁑π‘₯ γ€— " " ) (∫1β–’cos⁑〖π‘₯ 𝑑π‘₯ = sin⁑π‘₯ γ€— " " ) t = 〖𝑠𝑖𝑛〗^(βˆ’1) (π‘₯) sin t = x sin t = x 〖𝑠𝑖𝑛〗^2 𝑑 = π‘₯^2 1 βˆ’ cos^2⁑𝑑 = π‘₯^2 γ€–π‘π‘œπ‘ γ€—^2 t = 1 βˆ’ π‘₯^2 cos t = √(1βˆ’π‘₯^2 ) Now, Hence putting the values. ∫1β–’(π‘₯ 〖𝑠𝑖𝑛〗^(βˆ’1) π‘₯)/√(1βˆ’π‘₯^2 ) 𝑑π‘₯=" βˆ’t cost + sin t + C" =π’™βˆ’βˆš(πŸβˆ’π’™^𝟐 ) γ€–π’”π’Šπ’γ€—^(βˆ’πŸ) 𝒙 +𝐂

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo