Check sibling questions


Transcript

Example 13 Find ∫1▒(3𝑥 −2)/((𝑥 + 1)^2 (𝑥 + 3) ) 𝑑𝑥 We can write Integral as (3𝑥 − 2)/((𝑥 + 1)^2 (𝑥 + 3) )=𝐴/(𝑥 + 1) + 𝐵/(𝑥 + 1)^2 + 𝐶/((𝑥 + 3) ) (3𝑥 − 2)/((𝑥 + 1)^2 (𝑥 + 3) )=(𝐴(𝑥 + 1)(𝑥 + 3) + 𝐵(𝑥 + 3) + 𝐶(𝑥 + 1)^2)/((𝑥 + 1)^2 (𝑥 + 3) ) Cancelling denominator 3𝑥 −2=𝐴(𝑥+1)(𝑥+3)+𝐵(𝑥+3)+𝐶(𝑥+1)^2 Putting x = −1 3(−1) −2=𝐴(−1+1)(−1+3)+𝐵(−1+3)+𝐶(−1+1)^2 −3−2=𝐴×0+𝐵×2+𝐶×(0)^2 −5=𝐵×2 𝐵=(− 5)/2 Putting x = − 3 3𝑥 −2=𝐴(𝑥+1)(𝑥+3)+𝐵(𝑥+3)+𝐶(𝑥+1)^2 3(−3)−2=𝐴(−3+1)(−3+3)+𝐵(−3+3)+𝐶(−3+1)^2 −9−2=𝐴×0+𝐵×0+𝐶×(−2)^2 −11=0+0+𝐶(4) −11=4𝐶 (−11)/4 =𝐶 𝐶 =(−11)/4 Putting x = 0 3𝑥 −2=𝐴(𝑥+1)(𝑥+3)+𝐵(𝑥+3)+𝐶(𝑥+1)^2 3(0) − 2 = A(1) (3) + B(3) + C 〖"(1)" 〗^2 −2 = 3A + 3B + C Putting value of B & C −2 = 3A + 3((−5)/2) + ((−11)/4) −2 = 3A − 15/2−11/4 −2 = 3A + (−30 − 11)/4 −8 = 12A − 41 41 − 8 = 12A 33/12 = A 11/4 = A Hence, we can write (3𝑥 − 2)/((𝑥 + 1)^2 (𝑥 + 3) )=𝐴/(𝑥 + 1) + 𝐵/(𝑥 + 1)^2 + 𝐶/((𝑥 + 3) ) (3𝑥 − 2)/((𝑥 + 1)^2 (𝑥 + 3) )=11/4(𝑥 + 1) − 5/〖2(𝑥 + 1)〗^2 − 11/4(𝑥 + 3) Therefore ∫1▒(3𝑥 − 2)/((𝑥 + 1)^2 (𝑥 + 3) ) 𝑑𝑥 =∫1▒11/4(𝑥 + 1) 𝑑𝑥−∫1▒5/〖2(𝑥 + 1)〗^2 𝑑𝑥−∫1▒11/4(𝑥 + 3) 𝑑𝑥 =11/4 log⁡|𝑥+1|−5/2×((−1))/((𝑥 + 1) ) − 11/4 log⁡|𝑥+3|+𝐶 =11/4 (log⁡|𝑥+1|−log⁡|𝑥+3| )+5/(2 (𝑥 + 1) )+𝐶 =𝟏𝟏/𝟒 𝒍𝒐𝒈⁡|(𝒙 + 𝟏)/(𝒙 + 𝟑)| + 𝟓/(𝟐 (𝒙 + 𝟏) )+𝑪

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo