Check sibling questions

 


Transcript

Example 7 Find (i) ∫1▒cos^2⁡𝑥 𝑑𝑥 ∫1▒cos^2⁡𝑥 𝑑𝑥 =∫1▒((cos⁡2𝑥 + 1)/2) 𝑑𝑥 = 1/2 ∫1▒(cos⁡2𝑥+1) 𝑑𝑥 = 1/2 [∫1▒cos⁡2𝑥 𝑑𝑥+∫1▒1 𝑑𝑥] We know cos⁡2𝑥=2 cos^2⁡𝑥−1 cos⁡2𝑥+1=2 cos^2⁡𝑥 (cos⁡2𝑥 + 1)/2=cos^2⁡𝑥 ∫1▒𝒄𝒐𝒔⁡𝟐𝒙 𝒅𝒙 Let 2𝑥=𝑡 2 =𝑑𝑡/𝑑𝑥 𝑑𝑥=1/2 𝑑𝑡 ∫1▒cos⁡𝑡 . 1/2 𝑑𝑡 =1/2 (sin⁡𝑡+𝐶1) Putting value of 𝑡 = 2𝑥 =1/2 sin⁡2𝑥+𝐶1 ∫1▒𝟏 𝒅𝒙 =∫1▒𝑥^0 𝑑𝑥 =[𝑥^(0 + 1)/(0 + 1)]+𝐶 =𝑥+𝐶2 Thus, ∫1▒cos^2⁡𝑥 𝑑𝑥=1/2 [∫1▒cos⁡2𝑥 𝑑𝑥+∫1▒1 𝑑𝑥] =1/2 [1/2 sin⁡2𝑥+𝐶1+𝑥+𝐶2] =1/4 sin⁡2𝑥+𝑥/2+1/2(𝐶1+𝐶2) =𝒙/𝟐+𝟏/𝟒 𝐬𝐢𝐧⁡𝟐𝒙+𝑪 ("From (1) and (2) " ) ("Let" 𝐶1+𝐶2=𝐶)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo