Check sibling questions


Transcript

Example 7 Find (iii) ∫1▒sin^3⁡𝑥 𝑑𝑥 We know that 𝑠𝑖𝑛 3𝑥=3 𝑠𝑖𝑛⁡𝑥−4 〖𝑠𝑖𝑛〗^3⁡𝑥 4 〖𝑠𝑖𝑛〗^3 𝑥=3 𝑠𝑖𝑛⁡𝑥−𝑠𝑖𝑛⁡3𝑥 〖𝑠𝑖𝑛〗^3 𝑥=(3 𝑠𝑖𝑛⁡𝑥 − 𝑠𝑖𝑛⁡3𝑥)/4 ∫1▒sin^3⁡𝑥 𝑑𝑥=∫1▒(3 sin⁡𝑥 − sin⁡3𝑥)/4 𝑑𝑥 =1/4 ∫1▒(3 sin⁡𝑥−sin⁡3𝑥 ) 𝑑𝑥 =1/4 [3∫1▒sin⁡𝑥 𝑑𝑥−∫1▒sin⁡3𝑥 𝑑𝑥] ∫1▒𝒔𝒊𝒏⁡𝟑𝒙 𝒅𝒙 Let 3𝑥=𝑡 3=𝑑𝑡/𝑑𝑥 𝑑𝑥=1/3 𝑑𝑡 ∫1▒𝒔𝒊𝒏⁡𝟑𝒙 𝒅𝒙=∫1▒sin⁡𝑡 . 1/3 𝑑𝑡 =1/3 ∫1▒sin⁡𝑡 . 𝑑𝑡 =1/3 (〖−cos〗⁡𝑡+𝐶1) =−1/3 cos⁡𝑡+1/3 𝐶1 Putting value of 𝑡 =−1/3 cos⁡3𝑥+1/3 𝐶1 ∫1▒𝒔𝒊𝒏⁡𝒙 𝒅𝒙 =−cos⁡𝑥+𝐶2 Thus, ∫1▒sin^3⁡𝑥 𝑑𝑥=1/4 [3∫1▒〖sin⁡𝑥 𝑑𝑥〗−∫1▒sin⁡3𝑥 𝑑𝑥] =1/4 [3(−cos⁡𝑥+𝐶2)−(−1/3 cos⁡3𝑥+1/3 𝐶1)] =1/4 [−3 cos⁡𝑥+3 𝐶2+ 1/3 cos⁡3𝑥+1/3 𝐶1] =1/4 [−3 cos⁡𝑥+1/3 cos⁡3𝑥+(3 𝐶2−1/3 𝐶1)] =(−3)/4 cos⁡𝑥+1/12 cos⁡3𝑥+1/4 (3 𝐶2−1/3 𝐶1) =(−𝟑)/𝟒 𝒄𝒐𝒔⁡𝒙+𝟏/𝟏𝟐 𝒄𝒐𝒔⁡𝟑𝒙+𝑪 ("As" 1/4 (3 𝐶2−1/3 𝐶1)=𝐶)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo