Check sibling questions


Transcript

Example 7 Find (ii) ∫1▒〖sin⁡〖2𝑥 〗 cos⁡3𝑥 〗 𝑑𝑥 We know that 2 sin⁡𝐴 cos⁡𝐵=sin⁡(𝐴+𝐵)+sin⁡(𝐴−𝐵) sin⁡𝐴 cos⁡𝐵=1/2 [sin⁡(𝐴+𝐵)+sin⁡(𝐴−𝐵) ] Replace A by 2𝑥 & B by 3𝑥 sin⁡2𝑥 cos⁡3𝑥=1/2 [sin⁡(2𝑥+3𝑥)+sin⁡(2𝑥−3𝑥) ] sin⁡2𝑥 cos⁡3𝑥=1/2 [sin⁡(5𝑥)+sin⁡(−𝑥) ] sin⁡2𝑥 cos⁡3𝑥=1/2 [sin⁡5𝑥−sin⁡𝑥 ] ∫1▒(sin⁡〖2𝑥 〗 cos⁡3𝑥 ) 𝑑𝑥=1/2 ∫1▒(sin⁡5𝑥−sin⁡𝑥 ) 𝑑𝑥 =1/2 [∫1▒sin⁡5𝑥 𝑑𝑥−∫1▒sin⁡𝑥 𝑑𝑥] ∫1▒𝒔𝒊𝒏⁡𝟓𝒙 𝒅𝒙 Let 5𝑥=𝑡 5 = 𝑑𝑡/𝑑𝑥 𝑑𝑥=1/5 𝑑𝑡 =∫1▒sin⁡𝑡 . 1/5 𝑑𝑡 =1/5 ∫1▒sin⁡𝑡 . 𝑑𝑡 =1/5 (〖−cos〗⁡𝑡+𝐶1) =−1/5 cos⁡𝑡+1/5 𝐶1 Putting value of 𝑡 =−1/5 cos⁡5𝑥+1/5 𝐶1 ∫1▒sin⁡𝑥 𝑑𝑥 =−cos⁡𝑥+𝐶2 Thus, ∫1▒〖sin⁡〖2𝑥 〗 cos⁡3𝑥 〗=1/2 [∫1▒〖sin⁡5𝑥 𝑑𝑥〗−∫1▒sin⁡𝑥 𝑑𝑥] =1/2 [−1/5 cos⁡5𝑥+1/5 𝐶1−(−cos⁡𝑥 )+𝐶2] =1/2 [−1/5 cos⁡5𝑥+cos⁡𝑥+1/5 𝐶1−𝐶2] =1/2 [−1/5 cos⁡5𝑥+cos⁡𝑥+𝐶] =(−𝟏)/𝟏𝟎 𝐜𝐨𝐬⁡𝟓𝒙+𝟏/𝟐 𝐜𝐨𝐬⁡𝒙+𝑪

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo