Check sibling questions


Transcript

Example 6 Find the following integrals (iii) ∫1▒1/(1 + tan⁡𝑥 ) 𝑑𝑥 The given function cannot be integrated by direct substitution, so we have to simplify the given function . Simplifying the given function and integrating. ∫1▒1/(1 + tan⁡𝑥 ) .𝑑𝑥 = ∫1▒1/(1 + sin⁡𝑥/cos⁡𝑥 ) .𝑑𝑥 = ∫1▒1/((cos⁡𝑥 + sin⁡𝑥)/cos⁡𝑥 ) .𝑑𝑥 (𝑈𝑠𝑖𝑛𝑔 tan⁡𝑥=sin⁡𝑥/cos⁡𝑥 ) = ∫1▒cos⁡𝑥/(sin⁡𝑥 + cos⁡𝑥 ) .𝑑𝑥 Multiplying and dividing by 2 = ∫1▒(2 cos⁡𝑥)/(2 (sin⁡𝑥 + cos⁡𝑥 ) ) .𝑑𝑥 = ∫1▒(cos⁡𝑥 + cos⁡𝑥)/(2 (sin⁡𝑥 + cos⁡𝑥 ) ) .𝑑𝑥 Adding and subtracting sin⁡𝑥 in the numerator = ∫1▒(cos⁡𝑥 + cos⁡𝑥 + sin⁡𝑥 − sin⁡𝑥)/(2 (sin⁡𝑥 + cos⁡𝑥 ) ) .𝑑𝑥 = 1/2 ∫1▒(sin⁡𝑥 + cos⁡𝑥 + cos⁡𝑥 − sin⁡𝑥)/(sin⁡𝑥 + cos⁡𝑥 ) .𝑑𝑥 = 1/2 ∫1▒[(sin⁡𝑥 + cos⁡𝑥)/(sin⁡𝑥 + cos⁡𝑥 )+〖cos⁡𝑥 − sin〗⁡𝑥/(sin⁡𝑥 + cos⁡𝑥 )] 𝑑𝑥 = 1/2 ∫1▒[1+〖cos⁡𝑥 − sin〗⁡𝑥/(sin⁡𝑥 + cos⁡𝑥 )] 𝑑𝑥 = 1/2 [∫1▒〖1.𝑑𝑥+∫1▒〖cos⁡𝑥 − sin〗⁡𝑥/(sin⁡𝑥 + cos⁡𝑥 )〗 𝑑𝑥] = 1/2 [𝑥+𝐶1+∫1▒〖cos⁡𝑥 − sin〗⁡𝑥/(sin⁡𝑥 + cos⁡𝑥 ) 𝑑𝑥] Take, I1 =∫1▒〖cos⁡𝑥 − sin〗⁡𝑥/(sin⁡𝑥 + cos⁡𝑥 ) .𝑑𝑥 Let sin⁡𝑥 + cos⁡𝑥=𝑡 Differentiate both sides 𝑤.𝑟.𝑡.𝑥. cos⁡𝑥−sin⁡𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/(cos⁡𝑥 − sin⁡𝑥 ) Putting value of (𝑠𝑖𝑛⁡𝑥+𝑐𝑜𝑠⁡𝑥 ) and 𝑑𝑥 in I1 . I1=∫1▒〖cos⁡𝑥 − sin〗⁡𝑥/(sin⁡𝑥 + cos⁡𝑥 ) .𝑑𝑥 I1 = ∫1▒〖cos⁡𝑥 − sin〗⁡𝑥/𝑡 .𝑑𝑡/(cos⁡𝑥 − sin⁡𝑥 ) I1 =∫1▒1/𝑡 .𝑑𝑡 Let sin⁡𝑥 + cos⁡𝑥=𝑡 Differentiate both sides 𝑤.𝑟.𝑡.𝑥. cos⁡𝑥−sin⁡𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/(cos⁡𝑥 − sin⁡𝑥 ) Putting value of (𝑠𝑖𝑛⁡𝑥+𝑐𝑜𝑠⁡𝑥 ) and 𝑑𝑥 in I1 . I1=∫1▒〖cos⁡𝑥 − sin〗⁡𝑥/(sin⁡𝑥 + cos⁡𝑥 ) .𝑑𝑥 I1 = ∫1▒〖cos⁡𝑥 − sin〗⁡𝑥/𝑡 .𝑑𝑡/(cos⁡𝑥 − sin⁡𝑥 ) I1 =∫1▒1/𝑡 .𝑑𝑡 (𝑈𝑠𝑖𝑛𝑔 ∫1▒〖1/𝑥 .〗 𝑑𝑥=log⁡〖 |𝑥|〗+𝐶) (𝑈𝑠𝑖𝑛𝑔 𝑡=sin⁡𝑥+cos⁡𝑥 ) (𝑊ℎ𝑒𝑟𝑒 𝐶=𝐶1/2+𝐶2/2)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo