Check sibling questions

 


Transcript

Example 42 For a positive constant a find 𝑑𝑦/𝑑𝑥 , where 𝑦 = 𝑎^(𝑡+1/𝑡) , and 𝑥 =(𝑡+1/𝑡)^2 Here 𝒅𝒚/𝒅𝒙 = (𝒅𝒚/𝒅𝒕)/(𝒅𝒙/𝒅𝒕) Calculating 𝒅𝒚/𝒅𝒕 𝑦=𝑎^(𝑡 + 1/𝑡) Differentiating 𝑤.𝑟.𝑡. t 𝒅𝒚/𝒅𝒕 = 𝒅(𝒂^((𝒕 + 𝟏/𝒕) ) )/𝒅𝒕 𝑑𝑦/𝑑𝑡 = 𝑎^((𝑡 + 1/𝑡) ) .log⁡𝑎.𝑑(𝑡 + 1/𝑡)/𝑑𝑡 𝑑𝑦/𝑑𝑡 = 𝑎^((𝑡 + 1/𝑡) ) .log⁡𝑎.(1+(−1) 𝑡^(−2) ) 𝒅𝒚/𝒅𝒕 = 𝒂^((𝒕 + 𝟏/𝒕) ) .𝒍𝒐𝒈⁡𝒂.(𝟏−𝟏/𝒕^𝟐 ) "As " 𝑑(𝑎^𝑥 )/𝑑𝑥 " = " 𝑎^𝑥.𝑙𝑜𝑔⁡𝑎 Calculating 𝒅𝒙/𝒅𝒕 𝑥=(𝑡+1/𝑡)^𝑎 Differentiating 𝑤.𝑟.𝑡. t 𝑑𝑥/𝑑𝑡 = 𝑑((𝑡 + 1/𝑡)^(𝑎 ) )/𝑑𝑡 𝑑𝑥/𝑑𝑡 = a (𝑡+1/𝑡)^(𝑎 −1 ) . 𝑑(𝑡 + 1/𝑡)/𝑑𝑡 𝑑𝑥/𝑑𝑡 = a (𝑡+1/𝑡)^(𝑎 −1 ) . (𝑑(𝑡)/𝑑𝑡 + 𝑑(1/𝑡)/𝑑𝑡) 𝑑𝑥/𝑑𝑡 = a (𝑡+1/𝑡)^(𝑎 −1 ) . (1+ 𝑑(𝑡^(−1) )/𝑑𝑡) 𝑑𝑥/𝑑𝑡 = a 𝑝^(𝑎 −1 ) . 𝑑(𝑝)/𝑑𝑡 𝑑𝑥/𝑑𝑡 = a (𝑡+1/𝑡)^(𝑎 −1 ) . (1+(−1) 〖 𝑡〗^(−2) ) 𝑑𝑥/𝑑𝑡 = a (𝑡+1/𝑡)^(𝑎 −1 ) . (1− 1/𝑡^2 ) Calculating 𝒅𝒚/𝒅𝒙 𝑑𝑦/𝑑𝑥 = (𝑑𝑦/𝑑𝑡)/(𝑑𝑥/𝑑𝑡) 𝑑𝑦/𝑑𝑥 = (𝑎^(𝑡 + 1/𝑡) . log⁡〖𝑎 〗 × (1 − 1/𝑡^2 ))/(𝑎(𝑡 + 1/𝑡)^(𝑎 − 1) (1 − 1/𝑡^2 ).) 𝒅𝒚/𝒅𝒙 = (𝒂^(𝒕 + 𝟏/𝒕) . 𝒍𝒐𝒈⁡〖𝒂 〗)/(𝒂(𝒕 + 𝟏/𝒕)^(𝒂 − 𝟏) )

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo