Check sibling questions

Β 

Β 

Β 

Β 


Transcript

Example 40 (Method 1) Differentiate the following 𝑀.π‘Ÿ.𝑑. π‘₯. (i) cos^(βˆ’1) (sin⁑π‘₯) Let 𝑓(π‘₯) = cos^(βˆ’1) (sin⁑π‘₯) 𝑓(π‘₯) = cos^(βˆ’1) (γ€–cos 〗⁑(πœ‹/2 βˆ’π‘₯) ) 𝒇(𝒙) = 𝝅/𝟐 βˆ’π’™ Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓’(π‘₯) = (𝑑 (πœ‹/2))/𝑑π‘₯ βˆ’ (𝑑(π‘₯))/𝑑π‘₯ 𝑓’(π‘₯) = 0 βˆ’ 1 𝒇’(𝒙) = βˆ’ 1(𝐴𝑠 γ€– 𝑠𝑖𝑛 πœƒ 〗⁑〖=γ€–π‘π‘œπ‘  〗⁑〖(πœ‹/2 βˆ’π‘₯)γ€— γ€— ) ("As " (𝑑(π‘₯))/𝑑π‘₯ " = 1 & " πœ‹/2 " is constant" ) Example 40 (Method 2) Differentiate the following 𝑀.π‘Ÿ.𝑑. π‘₯. (i) cos^(βˆ’1) (sin⁑π‘₯) Let 𝑓(π‘₯) = cos^(βˆ’1) (sin⁑π‘₯) Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓′(π‘₯) = (βˆ’1)/√(1 βˆ’ γ€–(sin⁑π‘₯)γ€—^2 ) Γ— (sin⁑π‘₯ )^β€² 𝑓′(π‘₯) = (βˆ’1)/√(1 βˆ’ sin^2⁑π‘₯ ) Γ—cos⁑π‘₯ 𝑓′(π‘₯) = (βˆ’1)/√(cos^2⁑π‘₯ ) Γ—cos⁑π‘₯ 𝑓′(π‘₯) = (βˆ’1)/cos⁑π‘₯ Γ—cos⁑π‘₯ 𝒇’(𝒙) = βˆ’1

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo