Check sibling questions


Transcript

Example 36 If 𝑦 = A sin⁑π‘₯+B cos⁑π‘₯, then prove that 𝑑2𝑦/𝑑π‘₯2 + y = 0.𝑦 = A sin⁑π‘₯+B cos⁑π‘₯ Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑𝑦/𝑑π‘₯ = 𝑑(A sin⁑π‘₯ + B cos⁑π‘₯" " )/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = 𝑑(A sin⁑π‘₯ )/𝑑π‘₯ + 𝑑(B cos⁑π‘₯ )/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = A . 𝑑(sin⁑π‘₯ )/𝑑π‘₯ + B . 𝑑(cos⁑π‘₯" " )/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = A cos⁑π‘₯" " + B (βˆ’ sin⁑π‘₯) π’…π’š/𝒅𝒙 = A 𝒄𝒐𝒔⁑𝒙" " βˆ’ B π’”π’Šπ’β‘π’™ Again Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = (𝑑 (γ€–A cos〗⁑π‘₯" " " βˆ’" γ€–B sin〗⁑π‘₯))/𝑑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = 𝑑(A cos⁑π‘₯ )/𝑑π‘₯ βˆ’ 𝑑(B sin⁑π‘₯" " )/𝑑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = –A sin⁑π‘₯ βˆ’ B cos⁑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = – (A sin⁑π‘₯ + B cos⁑π‘₯) (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = –y π’…πŸπ’š/π’…π’™πŸ + π’š = 𝟎 Hence proved (As 𝑦 = 𝐴 𝑠𝑖𝑛⁑π‘₯+𝐡 π‘π‘œπ‘ β‘π‘₯)

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo