Check sibling questions

 


Transcript

Example 27 Differentiate √(((𝑥−3) (𝑥2+4))/( 3𝑥2+ 4𝑥 + 5)) 𝑤.𝑟.𝑡. 𝑥. Let y =√(((𝑥 − 3) (𝑥^2 + 4))/( 3𝑥2+ 4𝑥 + 5)) Taking log on both sides 𝒍𝒐𝒈⁡𝒚 = 𝒍𝒐𝒈 √(((𝒙 − 𝟑) (𝒙𝟐 + 𝟒))/( 𝟑𝒙𝟐+ 𝟒𝒙 + 𝟓)) log⁡𝑦 = log⁡ (((𝑥 − 3) (𝑥2 + 4))/( 3𝑥2+ 4𝑥 + 5))^(1/2) 𝒍𝒐𝒈⁡𝒚 = 𝟏/𝟐 log ((𝑥 − 3) (𝑥2 + 4))/((3𝑥2+ 4𝑥 + 5) ) (𝑈𝑠𝑖𝑛𝑔 log⁡〖𝑎^𝑏 〗=𝑏 log⁡𝑎) 𝒍𝒐𝒈⁡𝒚 = 𝟏/𝟐 log ((𝑥 − 3) (𝑥2 + 4))/((3𝑥2+ 4𝑥 + 5) ) 𝑙𝑜𝑔⁡𝑦 = 1/2 (log⁡〖 (𝑥−3)〗+〖log 〗⁡(𝑥2 + 4)−log⁡〖 (3𝑥2 + 4𝑥 + 5)〗 ) Differentiating 𝑤.𝑟.𝑡.𝑥 (𝑑 (log⁡𝑦))/𝑑𝑥 = 1/2 ((𝑑(log⁡(𝑥−3)+〖log 〗⁡〖(𝑥^2+4)−log⁡〖 (3𝑥^2+4𝑥+5)〗 〗 ) )/𝑑𝑥) (𝑑 (log⁡𝑦))/𝑑𝑥 = 1/2 ((𝑑(log⁡(𝑥−3)))/𝑑𝑥 " + " 𝑑(log⁡(𝑥^2+4) )/𝑑𝑥 " − " 𝑑(log⁡(3𝑥^2+4𝑥+5) )/𝑑𝑥) 1/𝑦 (𝑑𝑦/𝑑𝑥) = 1/2 [1/(𝑥 − 3) " . " 𝑑(𝑥 −3)/𝑑𝑥 " + " 1/(𝑥^2 + 4) " . " (𝑑 (𝑥^2 + 4))/𝑑𝑥 " – " 1/((3𝑥^2+ 4𝑥+ 5)) " . " (𝑑 (3𝑥^2+ 4𝑥+ 5))/(𝑑𝑥 )] 𝑈𝑠𝑖𝑛𝑔 𝑙𝑜𝑔⁡𝑎𝑏=𝑙𝑜𝑔⁡𝑎+𝑐𝑜𝑠⁡𝑏 &𝑙𝑜𝑔⁡〖𝑎/𝑏〗=𝑙𝑜𝑔⁡〖𝑎−𝑙𝑜𝑔⁡𝑏 〗 1/𝑦 (𝑑𝑦/𝑑𝑥) = 1/2 [1/((𝑥 − 3) ) " " (1−0) "+ " 1/(𝑥^2+ 4) " " (2𝑥 + 0)" − " 1/(3𝑥^2+ 4𝑥 + 5) " " (6𝑥 +4+0)" " ] 1/𝑦 (𝑑𝑦/𝑑𝑥) = 1/2 (1/((𝑥 − 3) )+2𝑥/(𝑥^2+ 4)−(6𝑥 + 4)/(3𝑥^2 + 4𝑥 + 5)) 𝑑𝑦/𝑑𝑥 = 𝑦/2 (1/((𝑥 − 3) )+2𝑥/(𝑥^2+ 4)−(6𝑥 + 4)/(3𝑥^2 + 4𝑥 + 5)) 𝒅𝒚/𝒅𝒙 = 𝟏/𝟐 √(((𝒙 − 𝟑)(𝒙^𝟐+ 𝟒))/(𝟑𝒙^𝟐+ 𝟒𝒙 + 𝟓)) (𝟏/((𝒙 − 𝟑) )+𝟐𝒙/(𝒙^𝟐+ 𝟒)−(𝟔𝒙 + 𝟒)/(𝟑𝒙^𝟐 + 𝟒𝒙 + 𝟓))

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo