Check sibling questions

 


Transcript

Example 2 Examine whether the function f given by 𝑓 (π‘₯) = π‘₯2 is continuous at π‘₯ = 0 𝑓(π‘₯) is continuous at π‘₯ = 0 if lim┬(xβ†’0) 𝑓(π‘₯) = 𝑓(0) L.H.S (π₯𝐒𝐦)┬(π±β†’πŸŽ) 𝒇(𝒙) "= " lim┬(xβ†’0) " " π‘₯2 Putting π‘₯ = 0 = (0)2 = 0 R.H.S 𝒇(𝟎) = (0)2 = 0 Since LHS = RHS Hence, f(x) is continuous at x = 0

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo