Check sibling questions

 


Transcript

Example 40 Differentiate the following w.r.t. x. (iii) sin^(βˆ’1) ((2^( π‘₯+1) )/( 1 +γ€– 4 γ€—^π‘₯ )) Let 𝑓(π‘₯) = sin^(βˆ’1) ((2^( π‘₯+1) )/( 1 +γ€– 4 γ€—^π‘₯ )) 𝑓(π‘₯) = sin^(βˆ’1) ((2^( π‘₯). 2)/( 1 + (2^π‘₯ )^2 )) Let 𝟐^𝒙 = tan ΞΈ 𝑓(π‘₯) = sin^(βˆ’1) ((tanβ‘γ€–πœƒ γ€—. 2)/( 1 + tan^2β‘πœƒ )) = sin^(βˆ’1) ((2 tanβ‘γ€–πœƒ γ€— )/( 1 +γ€– tan^2γ€—β‘πœƒ )) = sin^(βˆ’1) (sin 2πœƒ) = 2πœƒ (sin⁑2πœƒ "= " (2 tanβ‘πœƒ)/(1 +γ€– tan^2γ€—β‘πœƒ )) (As 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖(π‘ π‘–π‘›β‘πœƒ)γ€— =πœƒ) Since 2^π‘₯= tanβ‘πœƒ tan^(βˆ’1) (2^π‘₯ )=πœƒ ∴ 𝒇(𝒙) = 𝟐 (〖𝒕𝒂𝒏〗^(βˆ’πŸ) (𝟐^𝒙 )) Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓’(π‘₯) = 2 (𝑑 (tan^(βˆ’1) 2^π‘₯ )" " )/𝑑π‘₯ 𝑓’(π‘₯) = 2 . 1/(1 + (2^π‘₯ )^2 ) . (𝒅 (𝟐^𝒙 )" " )/𝒅𝒙 𝑓’(π‘₯) = (2 )/(1 + (2^π‘₯ )^2 ) . 𝟐^𝒙 . π’π’π’ˆβ‘πŸ (𝐴𝑠 𝑑/𝑑π‘₯(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1))=1/(1+π‘₯^2 )) (𝐴𝑠 𝑑/𝑑π‘₯ (π‘Ž^π‘₯ )=π‘Ž^π‘₯. π‘™π‘œπ‘”β‘π‘₯ ) 𝑓’(π‘₯) = (γ€–2. 2γ€—^π‘₯.γ€– log〗⁑2)/(1 + (2^π‘₯ )^2 ) 𝑓’(π‘₯) = (2^(π‘₯ + 1).γ€– log〗⁑2)/(1 + (2^π‘₯ )^2 ) 𝑓’(π‘₯) = (2^(π‘₯ + 1).γ€– log〗⁑2)/(1 + (2^2 )^π‘₯ ) 𝒇’(𝒙) = (𝟐^(𝒙 + 𝟏).γ€– π’π’π’ˆγ€—β‘πŸ)/(𝟏 + πŸ’^𝒙 )

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo