
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 9.4
Ex 9.4, 2
Ex 9.4, 3
Ex 9.4, 4 Important
Ex 9.4, 5
Ex 9.4, 6
Ex 9.4, 7 Important
Ex 9.4, 8
Ex 9.4, 9 Important
Ex 9.4, 10 Important
Ex 9.4, 11 Important
Ex 9.4, 12
Ex 9.4, 13
Ex 9.4, 14
Ex 9.4, 15 Important
Ex 9.4, 16
Ex 9.4, 17 Important
Ex 9.4, 18
Ex 9.4, 19 Important
Ex 9.4, 20 Important
Ex 9.4, 21
Ex 9.4, 22 Important
Ex 9.4, 23 (MCQ) You are here
Last updated at Aug. 11, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 9.4, 23 The general solution of the differential equation ππ¦/ππ₯=π^(π₯+π¦) is (A) π^π₯+π^(βπ¦)=πΆ (B) π^π₯+π^π¦=πΆ (C) π^(βπ₯)+π^π¦=πΆ (D) π^(βπ₯)+π^(βπ¦)=πΆ ππ¦/ππ₯ = π^(π₯ + π¦) ππ¦/ππ₯ = π^(π₯ ) π^( π¦) ππ¦/π^π¦ = π^(π₯ ) ππ₯ Integrating both sides β«1βπ^(βπ¦) ππ¦= β«1βπ^π₯ ππ₯ γβπγ^(βπ¦) = π^π₯+π π^π₯ + π^(βπ¦) = C β΄ Option (A) is correct.