Slide1.JPG Slide2.JPG Slide3.JPG Slide4.JPG Slide5.JPG Slide6.JPG Slide7.JPG

You saved atleast 2 minutes of distracting ads by going ad-free. Thank you :)

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Ex 9.4, 1 In each of the Exercise 1 to 10 , show that the given differential equation is homogeneous and solve (x^2+xy)dy=(x^2+y^2 )𝑑x (π‘₯^2+π‘₯𝑦)𝑑𝑦 =(π‘₯^2+𝑦^2 )𝑑π‘₯ Step 1: Find 𝑑𝑦/𝑑π‘₯ (x2 + xy)dy = (π‘₯^2+𝑦^2 )𝑑π‘₯ π’…π’š/𝒅𝒙 = (𝒙^𝟐 + π’š^𝟐)/(𝒙^𝟐 + π’™π’š) Step 2: Putting F(x , y) = 𝑑𝑦/𝑑π‘₯ and finding F(πœ†x, πœ†y) F(x, y) = (π‘₯^2 + 𝑦^2)/(π‘₯^2 + π‘₯𝑦) Finding F(𝝀x, 𝝀y) F(πœ†x, πœ†y) = ((πœ†γ€–π‘₯)γ€—^2+(πœ†γ€–π‘¦)γ€—^2)/((πœ†γ€–π‘₯)γ€—^2+πœ†π‘₯ + πœ†π‘¦) = (πœ†^2 π‘₯^2 + πœ†^2 𝑦^2)/(πœ†^2 π‘₯^2 + πœ†^2 π‘₯𝑦) = (πœ†^2 (π‘₯^2 𝑦^2))/(πœ†^2 (π‘₯^2+ π‘₯𝑦)) = (π‘₯^2 𝑦^2)/(π‘₯^2 + π‘₯𝑦) = F(x, y) So, F(πœ†x, πœ†y) = F(x, y) = πœ†0 F (x, y) Thus, F(x, y) is a homogenous equation function of order zero Therefore 𝑑𝑦/𝑑π‘₯ is a homogenous differential equation Step 3 : Solving 𝑑𝑦/𝑑π‘₯ by putting y = vx Putting y = vx Diff w.r.t.x 𝑑𝑦/𝑑π‘₯ = x𝑑𝑣/𝑑π‘₯ + v 𝑑π‘₯/𝑑π‘₯ π’…π’š/𝒅𝒙 = x 𝒅𝒗/𝒅𝒙 + v Putting value of 𝑑𝑦/𝑑π‘₯ and y = vx in (1) 𝑑𝑦/𝑑π‘₯ = (π‘₯^2 + 𝑦^2)/(π‘₯^2 + π‘₯𝑦) x 𝒅𝒗/𝒅𝒙 + v = (π’™πŸ + (𝒗𝒙)^𝟐)/(π’™πŸ + 𝒙(𝒗𝒙)) x 𝑑𝑣/𝑑π‘₯ + v = (π’™πŸ(𝟏 + 𝒗^𝟐))/(π‘₯2 + π‘₯2𝑣) x 𝑑𝑣/𝑑π‘₯ + v = (π’™πŸ(1 + 𝑣^2))/(π’™πŸ(1 + 𝑣)) x 𝑑𝑣/𝑑π‘₯ + v = (1 + 𝑣^2)/(1 + 𝑣) x 𝑑𝑣/𝑑π‘₯ = (1 + 𝑣^2)/(1 + 𝑣)βˆ’π’— x 𝑑𝑣/𝑑π‘₯ = (1 + 𝑣^2 βˆ’ 𝑣 βˆ’ 𝑣^2)/(1+𝑣) x 𝒅𝒗/𝒅𝒙 = (𝟏 βˆ’ 𝒗)/(𝟏 + 𝒗) ((1 + 𝑣))/((1 βˆ’ 𝑣)) dv = 𝑑π‘₯/π‘₯ βˆ’((𝑣 + 1)/(𝑣 βˆ’ 1)) dv = 𝑑π‘₯/π‘₯ ((𝒗 + 𝟏)/(𝒗 βˆ’ 𝟏)) dv = (βˆ’π’…π’™)/𝒙 Integrating both sides ∫1β–’((𝑣 + 1)/(𝑣 βˆ’ 1)) 𝑑𝑣=βˆ’βˆ«1▒𝑑π‘₯/π‘₯ ∫1β–’((𝒗 + 𝟏)/(𝒗 βˆ’ 𝟏)) 𝒅𝒗 = βˆ’log|𝒙|+𝒄 Let I = ∫1β–’((𝑣 + 1)/(𝑣 βˆ’ 1)) 𝑑𝑣 Solving I I = ∫1β–’((𝑣 + 1 βˆ’ 1 + 1)/(𝑣 βˆ’ 1)) 𝑑𝑣 I = ∫1β–’((𝒗 βˆ’ 𝟏 + 𝟐)/(𝒗 βˆ’ 𝟏)) 𝑑𝑣 I = ∫1β–’((𝒗 βˆ’ 𝟏 )/(𝒗 βˆ’ 𝟏)+𝟐/(𝒗 βˆ’ 𝟏)) 𝑑𝑣 I = ∫1β–’(1+2/(𝑣 βˆ’ 1)) 𝑑𝑣 I = ∫1▒𝑑𝑣+∫1β–’2/(𝑣 βˆ’ 1) 𝑑𝑣 I = 𝒗+𝟐 π₯𝐨𝐠⁑〖|π’—βˆ’πŸ|γ€— Putting v = y/x I = 𝑦/π‘₯+2 log⁑|𝑦/π‘₯βˆ’1| I = π’š/𝒙+𝟐 π’π’π’ˆβ‘|(π’š βˆ’ 𝒙)/𝒙| Putting value of I in (2) π’š/𝒙+𝟐 π’π’π’ˆβ‘|(π’š βˆ’ 𝒙)/𝒙|=βˆ’π’π’π’ˆβ‘|𝒙|+π‘ͺ 𝑦/π‘₯+π’π’π’ˆβ‘γ€–|(π’š βˆ’ 𝒙)/𝒙|^𝟐 γ€—+log⁑|π‘₯|=𝐢 𝑦/π‘₯+log⁑|(𝑦 βˆ’ π‘₯)^2/π‘₯^2 |+log⁑|π‘₯|=𝐢 𝑦/π‘₯+log⁑|(π’š βˆ’ 𝒙)^𝟐/𝒙^𝟐 Γ— 𝒙|=𝐢 𝑦/π‘₯+log⁑|(𝑦 βˆ’ π‘₯)^2/π‘₯|=𝐢 π’π’π’ˆβ‘|(π’š βˆ’ 𝒙)^𝟐/𝒙|=πΆβˆ’π‘¦/π‘₯ (π’š βˆ’ 𝒙)^𝟐/𝒙= 𝒆^(π‘ͺ βˆ’ π’š/𝒙) (𝑦 βˆ’ π‘₯)^2/π‘₯ = 𝑒^𝑐 Γ— 𝑒^(βˆ’ 𝑦/π‘₯) (𝑦 βˆ’ π‘₯)^2/π‘₯ = 𝑐 𝑒^(βˆ’ 𝑦/π‘₯) (π’™βˆ’π’š)^𝟐 = 𝒄𝒙 𝒆^(βˆ’ π’š/𝒙) (𝐴𝑠 π‘Ž log⁑𝑏=log⁑〖𝑏^π‘Ž γ€—) (𝐴𝑠 logβ‘π‘Ž+log⁑𝑏=logβ‘π‘Žπ‘)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo