Ex 9.4, 11 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Last updated at April 16, 2024 by Teachoo
Ex 9.4, 11 For each of the differential equations in Exercises from 11 to 15 , find the particular solution satisfying the given condition : (π₯+π¦)ππ¦+(π₯βπ¦)ππ₯=0;π¦=1 When π₯=1 The differential equation can be written as (π₯+π¦)ππ¦+(π₯βπ¦)ππ₯=0 ππ¦/ππ₯ = (β(π₯ β π¦))/(π₯ + π¦) Let F(x, y) = ππ¦/ππ₯ = (β(π₯ β π¦))/(π₯ + π¦) Finding F(πx, πy) F(πx, πy) = (β(ππ₯ β ππ¦))/(ππ₯ + ππ¦) = (βπ(π₯ β π¦))/(π(π₯ + π¦)) = (β(π₯ β π¦))/(π₯ + π¦) = πΒ° F(x, y) β΄ F(x, y) is a homogenous function of degree zero Putting y = vx. Differentiating w.r.t. x π π/π π = π π π/π π + v Putting value of ππ¦/ππ₯ and y = vx in (1) ππ¦/ππ₯ = (β(π₯ β π¦))/(π₯ + π¦) π + (π π π)/π π = (β(π β ππ))/(π + ππ) π£ + (π₯ ππ£)/ππ₯ = (βπ₯(1 β π£))/(π₯(1 + π£)) π£ + (π₯ ππ£)/ππ₯ = (π£ β 1)/(1 + π£) (π₯ ππ£)/ππ₯ = (π£ β 1)/(1 + π£)βπ£ (π₯ ππ£)/ππ₯ = (π£ β 1 β π£(1 + π£) )/(1 + π£) (π₯ ππ£)/ππ₯ = (π£ β 1 β π£ β π£^2)/(1 + π£) (π₯ ππ£)/ππ₯ = (β(1 + π£^2 ))/(1 + π£) (π + π)/(π + π^π ) π π = (βπ π)/π Integrating both sides β«1βγ(1 + π£)/(1 + π£^2 ) ππ£=ββ«1βππ₯/π₯γ β«1βγ1/(π£^2 + 1) ππ£+β«1βπ£/(π£^2 + 1) ππ£=βlogβ‘|π₯|+πΆγ tanβ1 v + β«1βπ/(π^π + π) π π=βπππβ‘|π|+πͺ Putting v2 + 1 = t 2v dv = dt v dv = ππ‘/2 Thus, our equation becomes tanβ1 v + β«1βγ1/π‘ Γ ππ‘/2 " =" βlogβ‘|π₯|+πΆ" " γ tanβ1 v + 1/2Γlogβ‘γ|π‘|γ " ="βlogβ‘|π₯|+πΆ Putting back value of t tanβ1 v + 1/2Γlogβ‘γ|π£^2+1|γ " ="βlogβ‘|π₯|+πΆ Putting back value of v = π¦/π₯ tanβ1 π¦/π₯ + 1/2Γlogβ‘|(π¦/π₯)^2+1| " ="βlogβ‘|π₯|+πΆ tanβ1 π¦/π₯ + 1/2Γlogβ‘|(π¦/π₯)^2+1| " "+logβ‘|π₯|=πΆ tanβ1 π¦/π₯ + 1/2Γlogβ‘|(π¦/π₯)^2+1| " "+2/2 logβ‘|π₯|=πΆ tanβ1 π¦/π₯ + 1/2Γ(logβ‘|(π¦/π₯)^2+1| " " +2 logβ‘|π₯| )=πΆ tanβ1 π¦/π₯ + 1/2Γ(logβ‘|π¦^2/π₯^2 +1| " " +logβ‘|π₯^2 | )=πΆ tanβ1 π¦/π₯ + 1/2Γ(logβ‘((π¦^2 + π₯^2)/π₯^2 )" " +logβ‘γπ₯^2 γ )=πΆ tanβ1 π¦/π₯ + 1/2Γ(logβ‘((π¦^2 + π₯^2)/π₯^2 Γπ₯^2 ) )=πΆ tanβ1 π/π + π/πΓ(πππβ‘(π^π+π^π ) )=πͺ 2tanβ1 π¦/π₯ + (logβ‘(π¦^2+π₯^2 ) )=2πΆ 2tanβ1 π¦/π₯ + (logβ‘(π¦^2+π₯^2 ) )=πΎ Now, Putting x = 1 & y = 1 in equation 2tanβ1 π¦/π₯ + logβ‘(π¦^2+π₯^2 )=πΎ 2tanβ1 (1/1) + log (1^2+1^2 )= K 2tanβ1 1 + log 2 = K 2 Γ π/4 + log 2 = K π/2 + log 2 = K K = π /π + log 2 Put value of K in (2) 2tanβ1 π¦/π₯ + logβ‘(π¦^2+π₯^2 )=πΎ 2tanβ1 π¦/π₯ + logβ‘(π¦^2+π₯^2 )=π/2 " + log 2" πππβ‘(π^π+π^π )+ 2tanβ1 π/π =π /π " + log 2"