Ex 9.4, 13 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Last updated at April 16, 2024 by Teachoo
Ex 9.4, 13 For each of the differential equations in Exercises from 11 to 15 , find the particular solution satisfying the given condition : [๐ฅ sin^2โกใ(๐ฆ/๐ฅ)โ๐ฆใ ]๐๐ฅ+๐ฅ๐๐ฆ=0;๐ฆ=๐/4 When ๐ฅ=1 Ex 9.4, 13 For each of the differential equations in Exercises from 11 to 15 , find the particular solution satisfying the given condition : [๐ฅ sin^2โกใ(๐ฆ/๐ฅ)โ๐ฆใ ]๐๐ฅ+๐ฅ๐๐ฆ=0;๐ฆ=๐/4 When ๐ฅ=1 Differential equation can be written as [๐ฅ sin^2โกใ(๐ฆ/๐ฅ)โ๐ฆใ ]๐๐ฅ+๐ฅ๐๐ฆ=0 x dy = โ [๐ฅ sin^2โกใ(๐ฆ/๐ฅ)โ๐ฆใ ]dx ๐ ๐/๐ ๐ = โ[๐/๐ ใ๐ฌ๐ข๐งใ^๐โกใ๐/๐ โ๐/๐ใ ] Let F(x, y) = ๐๐ฆ/๐๐ฅ =โ[๐ฅ/๐ฅ sin^2โกใ๐ฆ/๐ฅ โ๐ฆ/๐ฅใ ] Finding F(๐x, ๐y) F(๐x, ๐y) = โ[sin^2โกใ๐๐ฆ/๐๐ฅโ๐๐ฆ/๐๐ฅใ ] = โ[sin^2โกใ๐ฆ/๐ฅโ๐ฆ/๐ฅใ ] = ๐ยฐ F (x, y) โด F(x, y) is ๐ homogenous function of degree zero Putting y = vx Diff w.r.t. x ๐ ๐/๐ ๐ = x ๐ ๐/๐ ๐ + v Putting value of ๐๐ฆ/๐๐ฅ and y = vx in (1) ๐๐ฆ/๐๐ฅ = โ[๐ฅ/๐ฅ sin^2โกใ๐ฆ/๐ฅ โ๐ฆ/๐ฅใ ] v + (๐ ๐ ๐)/๐ ๐ = โ[ใ๐ฌ๐ข๐งใ^๐ ๐๐/๐โ๐๐/๐] v + (๐ฅ ๐๐ฃ)/๐๐ฅ = โ[sin^2 ๐ฃโ๐ฃ] (๐ฅ ๐๐ฃ)/๐๐ฅ = v โ sin2 v โ v (๐ฅ ๐๐ฃ)/๐๐ฅ = โ sin2 v ๐ ๐/ใ๐๐๐ใ^๐โก๐ = โ๐ ๐/๐ Integrating both sides โซ1โ๐๐ฃ/(sin^2 ๐ฃ) = โโซ1โ๐๐ฅ/๐ฅ โซ1โใ๐๐๐ ๐๐^2 ๐ฃ ๐๐ฃใ = โโซ1โ๐๐ฅ/๐ฅ โ cot v = โ log |๐ฅ|+๐ log |๐| โ cot v = C Putting value of v = ๐ฆ/๐ฅ log |๐ฅ| โ cot (๐ฆ/๐ฅ) = C Putting x = 1 & y = ๐ /๐ log 1 โ cot (๐/4) = C 0 โ 1 = C C = โ1 Putting value of C in (2) log |๐ฅ| โ cot ๐ฆ/๐ฅ = โ1 cot ๐ฆ/๐ฅ โ log |๐ฅ| = 1 cot ๐ฆ/๐ฅ โ log |๐ฅ| = log e cot ๐ฆ/๐ฅ = log |๐ฅ| + log e cot ๐/๐ = log |๐๐|