



Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 9.4
Ex 9.4, 2
Ex 9.4, 3
Ex 9.4, 4 Important
Ex 9.4, 5
Ex 9.4, 6
Ex 9.4, 7 Important
Ex 9.4, 8
Ex 9.4, 9 Important
Ex 9.4, 10 Important
Ex 9.4, 11 Important
Ex 9.4, 12 You are here
Ex 9.4, 13
Ex 9.4, 14
Ex 9.4, 15 Important
Ex 9.4, 16
Ex 9.4, 17 Important
Ex 9.4, 18
Ex 9.4, 19 Important
Ex 9.4, 20 Important
Ex 9.4, 21
Ex 9.4, 22 Important
Ex 9.4, 23 (MCQ)
Last updated at March 30, 2023 by Teachoo
Ex 9.4, 12 Find a particular solution satisfying the given condition : 2 1 =1; =0 When =2 2 1 dy = dx dy = ( 2 1) Integrating both sides. = ( 2 1) = ( + 1)( 1) We can write integrand as 1 ( + 1)( 1) = + + 1 + 1 By canceling the denominators. 1 = A (x 1) (x + 1) B x (x 1) + C x (x + 1) Putting x = 0 1 = A (0 1) (0 + 1) + B.0. (0 1) + C.0. (0 + 1) 1 = A ( 1) (1) + B.0 + C.0 1 = A A = 1 Similarly putting x = 1 1 = A ( 1 1) ( 1 + 1) + B ( 1) ( 1 1) + C( 1)( 1 + 1) 1 = A ( 2) (0) + B ( 1) ( 2) + C ( 1) (0) 1 = 0 + 2B + 0 2B = 1 B = 1 2 Similarly putting x = 1 1 = A(1 1) (1 + 1) + B.1(1 1) + C(1)(1 + 1) 1 = A (0) (2) + B.1.0 + C.2 2C = 1 C = 1 2 Therefore 1 ( + 1)( 1) = 1 + 1 2( + 1) + 1 2( 1) Now, From (1) y = 1 ( + 1)( 1) dx = 1 + dx + 1 2 + 1 + 1 2 1 = log + 1 2 log +1 + 1 2 log 1 + = 2 2 log + 1 2 log +1 + 1 2 log 1 + = 1 2 2 log 2+ log ( +1)( 1) + = 1 2 log 2 + log ( +1)( 1) + = 1 2 log 2 ( 2 1) + = 1 2 log 2 1 2 + y = 1 2 log 2 1 2 + C Given that x = 2, y = 0 Substituting values in (1) we get 0 = 1 2 log 2 2 1 2 2 + C 0 = 1 2 log 3 4 + C C = 1 2 log 3 4 Putting value of c in (1), y = log log