



Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at May 29, 2018 by Teachoo
Transcript
Ex 9.4, 12 Find a particular solution satisfying the given condition : 2 1 =1; =0 When =2 2 1 dy = dx dy = ( 2 1) Integrating both sides. = ( 2 1) = ( + 1)( 1) We can write integrand as 1 ( + 1)( 1) = + + 1 + 1 By canceling the denominators. 1 = A (x 1) (x + 1) B x (x 1) + C x (x + 1) Putting x = 0 1 = A (0 1) (0 + 1) + B.0. (0 1) + C.0. (0 + 1) 1 = A ( 1) (1) + B.0 + C.0 1 = A A = 1 Similarly putting x = 1 1 = A ( 1 1) ( 1 + 1) + B ( 1) ( 1 1) + C( 1)( 1 + 1) 1 = A ( 2) (0) + B ( 1) ( 2) + C ( 1) (0) 1 = 0 + 2B + 0 2B = 1 B = 1 2 Similarly putting x = 1 1 = A(1 1) (1 + 1) + B.1(1 1) + C(1)(1 + 1) 1 = A (0) (2) + B.1.0 + C.2 2C = 1 C = 1 2 Therefore 1 ( + 1)( 1) = 1 + 1 2( + 1) + 1 2( 1) Now, From (1) y = 1 ( + 1)( 1) dx = 1 + dx + 1 2 + 1 + 1 2 1 = log + 1 2 log +1 + 1 2 log 1 + = 2 2 log + 1 2 log +1 + 1 2 log 1 + = 1 2 2 log 2+ log ( +1)( 1) + = 1 2 log 2 + log ( +1)( 1) + = 1 2 log 2 ( 2 1) + = 1 2 log 2 1 2 + y = 1 2 log 2 1 2 + C Given that x = 2, y = 0 Substituting values in (1) we get 0 = 1 2 log 2 2 1 2 2 + C 0 = 1 2 log 3 4 + C C = 1 2 log 3 4 Putting value of c in (1), y = log log
Ex 9.4
Ex 9.4, 2
Ex 9.4, 3
Ex 9.4, 4 Important
Ex 9.4, 5
Ex 9.4, 6
Ex 9.4, 7
Ex 9.4, 8
Ex 9.4, 9 Important
Ex 9.4, 10 Important
Ex 9.4, 11
Ex 9.4, 12 You are here
Ex 9.4, 13
Ex 9.4, 14
Ex 9.4, 15 Important
Ex 9.4, 16
Ex 9.4, 17
Ex 9.4, 18
Ex 9.4, 19 Important
Ex 9.4, 20 Important
Ex 9.4, 21
Ex 9.4, 22 Important
Ex 9.4, 23
About the Author