# Ex 9.3, 7 - Chapter 9 Class 12 Differential Equations

Last updated at April 16, 2024 by Teachoo

Ex 9.3

Ex 9.3, 1
Important

Ex 9.3, 2

Ex 9.3, 3

Ex 9.3, 4 Important

Ex 9.3, 5

Ex 9.3, 6

Ex 9.3, 7 Important You are here

Ex 9.3, 8

Ex 9.3, 9 Important

Ex 9.3, 10 Important

Ex 9.3, 11 Important

Ex 9.3, 12

Ex 9.3, 13

Ex 9.3, 14

Ex 9.3, 15 Important

Ex 9.3, 16

Ex 9.3, 17 Important

Ex 9.3, 18

Ex 9.3, 19 Important

Ex 9.3, 20 Important

Ex 9.3, 21

Ex 9.3, 22 Important

Ex 9.3, 23 (MCQ)

Last updated at April 16, 2024 by Teachoo

Ex 9.3, 7 For each of the differential equations in Exercises 1 to 10, find the general solution : ๐ฆ logโกใ๐ฆ ๐๐ฅ โ๐ฅ ๐๐ฆ=0ใ ๐ฆ logโกใ๐ฆ ๐๐ฅ โ๐ฅ ๐๐ฆ=0ใ ๐ฆ logโก๐ฆ ๐๐ฅ=๐ฅ ๐๐ฆ ๐ ๐/๐ = ๐ ๐/(๐ ๐ฅ๐จ๐ โก๐ ) Integrating both sides โซ1โใ๐๐ฆ/(๐ฆ logโก๐ฆ )= โซ1โ๐๐ฅ/๐ฅใ โซ1โ๐ ๐/(๐ ๐๐๐โก๐ )=๐ฅ๐จ๐ โกใ|๐|ใ+๐ช Putting t = log y dt = 1/๐ฆ dy dy = y dt Hence, our equation becomes โซ1โ(๐ฆ ๐๐ก)/(๐ฆ.๐ก)=logโกใ|๐ฅ|ใ+๐ถ โซ1โ๐๐ก/๐ก=logโกใ|๐ฅ|ใ+๐ถ ๐๐๐ |๐ก|=๐๐๐โกใ|๐ฅ|ใ+๐ถ ๐๐๐ |๐|=๐๐๐โก|๐|+๐ฅ๐จ๐ โก๐ช Putting t = log y log (log y) = log x + log c log (log y) = log cx (Using log ab = log ๐ + log b) Cancelling log log y = cx y = ecx