1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise


Ex 9.4, 7 For each of the differential equations in Exercises 1 to 10, find the general solution : ๐‘ฆ logโกใ€–๐‘ฆ ๐‘‘๐‘ฅ โˆ’๐‘ฅ ๐‘‘๐‘ฆ=0ใ€— ๐‘ฆ logโกใ€–๐‘ฆ ๐‘‘๐‘ฅ โˆ’๐‘ฅ ๐‘‘๐‘ฆ=0ใ€— ๐‘ฆ logโก๐‘ฆ ๐‘‘๐‘ฅ=๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ/๐‘ฅ = ๐‘‘๐‘ฆ/(๐‘ฆ logโก๐‘ฆ ) Integrating both sides โˆซ1โ–’ใ€–๐‘‘๐‘ฆ/(๐‘ฆ logโก๐‘ฆ )= โˆซ1โ–’๐‘‘๐‘ฅ/๐‘ฅใ€— โˆซ1โ–’๐‘‘๐‘ฆ/(๐‘ฆ logโก๐‘ฆ )=logโกใ€–|๐‘ฅ|ใ€—+๐ถ Putting t = log y dt = 1/๐‘ฆ dy dy = y dt Hence, our equation becomes โˆซ1โ–’(๐‘ฆ ๐‘‘๐‘ก)/(๐‘ฆ.๐‘ก)=logโกใ€–|๐‘ฅ|ใ€—+๐ถ โˆซ1โ–’๐‘‘๐‘ก/๐‘ก=logโกใ€–|๐‘ฅ|ใ€—+๐ถ ๐‘™๐‘œ๐‘” |๐‘ก|=๐‘™๐‘œ๐‘”โกใ€–|๐‘ฅ|ใ€—+๐ถ ๐‘™๐‘œ๐‘” |๐‘ก|=๐‘™๐‘œ๐‘”โก|๐‘ฅ|+logโก๐ถ Putting t = log y log (log y) = log x + log c log (log y) = log cx (Using log ab = log ๐‘Ž + log b) Cancelling log log y = cx y = ecx

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.