

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 9.3
Ex 9.3, 2
Ex 9.3, 3
Ex 9.3, 4 Important
Ex 9.3, 5
Ex 9.3, 6
Ex 9.3, 7 Important You are here
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10 Important
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16
Ex 9.3, 17 Important
Ex 9.3, 18
Ex 9.3, 19 Important
Ex 9.3, 20 Important
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 (MCQ)
Last updated at May 29, 2023 by Teachoo
Ex 9.3, 7 For each of the differential equations in Exercises 1 to 10, find the general solution : ๐ฆ logโกใ๐ฆ ๐๐ฅ โ๐ฅ ๐๐ฆ=0ใ ๐ฆ logโกใ๐ฆ ๐๐ฅ โ๐ฅ ๐๐ฆ=0ใ ๐ฆ logโก๐ฆ ๐๐ฅ=๐ฅ ๐๐ฆ ๐๐ฅ/๐ฅ = ๐๐ฆ/(๐ฆ logโก๐ฆ ) Integrating both sides โซ1โใ๐๐ฆ/(๐ฆ logโก๐ฆ )= โซ1โ๐๐ฅ/๐ฅใ โซ1โ๐๐ฆ/(๐ฆ logโก๐ฆ )=logโกใ|๐ฅ|ใ+๐ถ Putting t = log y dt = 1/๐ฆ dy dy = y dt Hence, our equation becomes โซ1โ(๐ฆ ๐๐ก)/(๐ฆ.๐ก)=logโกใ|๐ฅ|ใ+๐ถ โซ1โ๐๐ก/๐ก=logโกใ|๐ฅ|ใ+๐ถ ๐๐๐ |๐ก|=๐๐๐โกใ|๐ฅ|ใ+๐ถ ๐๐๐ |๐ก|=๐๐๐โก|๐ฅ|+logโก๐ถ Putting t = log y log (log y) = log x + log c log (log y) = log cx (Using log ab = log ๐ + log b) Cancelling log log y = cx y = ecx