Ex 9.3, 16 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.3
Ex 9.3, 2
Ex 9.3, 3
Ex 9.3, 4 Important
Ex 9.3, 5
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10 Important
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16 You are here
Ex 9.3, 17 Important
Ex 9.3, 18
Ex 9.3, 19 Important
Ex 9.3, 20 Important
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 (MCQ)
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.3, 16 For the differential equation 𝑥𝑦 𝑑𝑦/𝑑𝑥=(𝑥+2)(𝑦+2) , find the solution curve passing through the point (1 , −1) 𝑥𝑦 𝑑𝑦/𝑑𝑥=(𝑥+2)(𝑦+2) (𝑦 𝑑𝑦)/(𝑦 + 2) = (𝑥 + 2)/𝑥 dx Integrating both sides ∫1▒𝒚/(𝒚 + 𝟐) dy = ∫1▒(𝒙 + 𝟐)/𝒙 dx ∫1▒(𝑦 + 2 − 2)/(𝑦 + 2) dy = ∫1▒(1+( 2)/𝑥) 𝑑𝑥 ∫1▒(1−( 2)/(𝑦 + 2)) dy = ∫1▒(1+( 2)/𝑥) 𝑑𝑥 y − 2 log (y + 2) = x + 2 log x + C Since curve passes through (1, − 1) Putting x = 1 and y = −1 in (1) −1 − 2 log (−1 + 2) = 1 + 2 log 1 + C −1 − 2log1 = 1 + 2log1 + C −1 = 1 + C C = −2 Put C = −2 In (1) y = 2 log (y + 2) + x + 2 log x − 2 y − x + 2 = log (y + 2)2 + log x2 y − x + 2 = log (x2 (y + 2)2)