Get live Maths 1-on-1 Classs - Class 6 to 12

Ex 9.4

Ex 9.4, 1
Important

Ex 9.4, 2

Ex 9.4, 3

Ex 9.4, 4 Important

Ex 9.4, 5

Ex 9.4, 6

Ex 9.4, 7 Important

Ex 9.4, 8

Ex 9.4, 9 Important

Ex 9.4, 10 Important

Ex 9.4, 11 Important You are here

Ex 9.4, 12

Ex 9.4, 13

Ex 9.4, 14

Ex 9.4, 15 Important

Ex 9.4, 16

Ex 9.4, 17 Important

Ex 9.4, 18

Ex 9.4, 19 Important

Ex 9.4, 20 Important

Ex 9.4, 21

Ex 9.4, 22 Important

Ex 9.4, 23 (MCQ)

Chapter 9 Class 12 Differential Equations

Serial order wise

Last updated at March 23, 2023 by Teachoo

Ex 9.4, 11 Find a particular solution satisfying the given condition : (𝑥^3+𝑥^2+𝑥+1) 𝑑𝑦/𝑑𝑥=2𝑥^2+𝑥; 𝑦=1 when 𝑥=0 (𝑥^3+𝑥^2+𝑥+1) 𝑑𝑦/𝑑𝑥=2𝑥^2+𝑥 𝑑𝑦 = (2𝑥^2 + 𝑥)/(𝑥^3 + 𝑥^2 + 𝑥 + 1) 𝑑𝑥 Integrating both sides ∫1▒〖𝑑𝑦=∫1▒(2𝑥^2 + 𝑥)/(𝑥3 + 𝑥2 + 𝑥 + 1)〗 dx y = ∫1▒(2𝑥^2 + 𝑥)/( (𝑥 + 1)(𝑥^2 + 1)) dx Rough x = −1 is a solution of x3 + x2 + x + 1 as (-1)2 + (-1)2 + (−1) + 1 = 0 Hence (x + 1) is one of its factors. So, we can write x3 + x2 + x + 1 = (x + 1) (x2 + 1) Integrating by partial fractions, using formula (2𝑥^2 +𝑥)/((𝑥 + 1)(𝑥^2+1)) = 𝐴/(𝑥 + 1)+(𝐵𝑥 + 𝐶)/(𝑥^2 + 1) (2𝑥^2 +𝑥)/((𝑥 + 1)(𝑥^2+1)) = (𝐴(𝑥^2+1) + (𝐵𝑥 + 𝑐)(𝑥 + 1))/((𝑥 + 1)(𝑥^2 + 1)) 2𝑥^2 + x = A (𝑥^2+ 1) + (Bx + C) (x + 1) Putting x = −1 2(−1)2 − 1 = A ((−1)2 + 1) + (B(−1) + C)(−1 + 1) 2 − 1 = A(2) + (–B + C)(0) 1 = 2A A = 𝟏/𝟐 Putting x = 0 0 = A (0 + 1) + (B(0) + C)(0 + 1) 0 = A + C(1) A = −C Since A = 1/2 ∴ C = (−1)/2 Putting x = 1 2(1) + 1 = A (12 + 1) + (B(1) + C) (1 + 1) 3 = 2A + 2B + 2C Putting A = 1/2, C = (−1)/2 3 = 2 × 1/2 + 2B + 2 (−1/2 ) 3 = 2B B = 3/2 Hence, (2𝑥^2 + 𝑥)/((𝑥 + 1)(𝑥^2+1)) = 1/(2(𝑥 + 1)) + (3/2 𝑥 − 1/2)/(𝑥^2 + 1) = 1/(2(𝑥 + 1)) + (3𝑥 −1)/(〖2(𝑥〗^(2 )+ 1)) Now, our equation becomes y = ∫1▒〖(2𝑥^2 + 𝑥)/((𝑥 + 1)(𝑥^2 + 1)) 𝑑𝑥〗 y = ∫1▒〖1/(2(𝑥 + 1))+3𝑥/(2(𝑥^(2 )+1)) − 1/2(𝑥^2 + 1) 𝑑𝑥〗 y = ∫1▒〖1/(2(𝑥 + 1)) 𝑑𝑥〗+∫1▒〖3𝑥/(2(𝑥^(2 )+1)) 𝑑𝑥〗−∫1▒〖 1/2(𝑥^2 + 1) 𝑑𝑥〗 y = 1/2 log (x + 1) +∫1▒〖3𝑥/(2(𝑥^(2 )+1)) 𝑑𝑥〗− 1/2 tan−1 x Integrating ∫1▒〖𝟑𝒙/(𝟐(𝒙^𝟐 + 𝟏)) 𝒅𝒙〗 Put t = x2 + 1 dt = 2x dx ∴ dx = 𝑑𝑡/2𝑥 So, ∫1▒〖3𝑥/(2(𝑥^2 + 1)) 𝑑𝑥〗 = 3/2 ∫1▒𝑥/𝑡×𝑑𝑡/2𝑥 = 3/4 ∫1▒𝑑𝑡/𝑡 = 3/4 log |𝑡|+𝑐 Putting back value of t ∫1▒〖3𝑥/(2(𝑥^2+1)) 𝑑𝑥〗 = 3/4 log (x2 + 1) + C Now, From (1) y = 1/2 log (x + 1) +∫1▒〖3𝑥/(2(𝑥^(2 )+1)) 𝑑𝑥〗− 1/2 tan−1 x y = 1/2 log (x + 1) +3/4 " log (x2 + 1)"− 1/2 tan−1 x + C Putting x = 0 and y = 1 1 = 1/2 log (0 + 1) + 3/4 log (0 + 1) − 1/2 tan−1 0 + C 1 = 1/2 log (1) + 3/4 log (1) − 1/2 tan−1 0 + C 1 = 0 + 0 − 0 + C 1 = C Putting value of C in (1) y = 1/2 log (x + 1) + 3/4 log (x2 + 1) − 1/2 tan−1 x + 1 y = 2/4 log (x + 1) + 3/4 log (x2 + 1) − 1/2 tan−1 x + 1 y = 1/4 log (x + 1)2 + 1/4 log (x2 + 1)3 − 1/2 tan−1 x + 1 (∵ log 1 = 0 & tan = 0) (∵ alog x = log x𝑎) y = 1/4 [log〖 (𝑥+1)^2 〗+log〖(𝑥^2+1)^3 〗 ] "− " 1/2 " tan−1 x + 1 " y = 𝟏/𝟒 𝒍𝒐𝒈〖〖 [(𝒙+𝟏)〗^𝟐 (𝒙^𝟐+𝟏)^𝟑] 〗 "− " 𝟏/𝟐 " tan−1 x + 1 " ( As log 𝑎 + log b = log 𝑎b )