Ex 9.3
Ex 9.3, 2
Ex 9.3, 3
Ex 9.3, 4 Important You are here
Ex 9.3, 5
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10 Important
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16
Ex 9.3, 17 Important
Ex 9.3, 18
Ex 9.3, 19 Important
Ex 9.3, 20 Important
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 9.3, 4 For each of the differential equations in Exercises 1 to 10, find the general solution : sec^2β‘γπ₯ tanβ‘γπ¦ ππ₯+sec^2β‘γπ¦ tanβ‘γπ₯ππ¦=0γ γ γ γsec^2β‘γπ₯ tanβ‘γπ¦ ππ₯+sec^2β‘γπ¦ tanβ‘γπ₯ππ¦=0γ γ γ γ Dividing both sides by tan y tan x (π ππ2π₯ π‘ππβ‘π¦ ππ₯ +γπ ππγ^2β‘π¦ π‘ππβ‘γπ₯ ππ¦γ)/π‘ππβ‘γπ¦ π‘ππβ‘π₯ γ = 0/π‘ππβ‘γπ₯ π‘ππβ‘π¦ γ (π ππ2π₯ π‘πππ¦ ππ₯)/π‘ππβ‘γπ¦ π‘ππβ‘π₯ γ + (π ππ2π¦ π‘πππ₯ ππ¦)/π‘ππβ‘γπ¦ π‘ππβ‘π₯ γ = 0 (πππππ )/πππ§β‘π dx + πππππ/πππβ‘π dy = 0 Integrating both sides β«1βγ(π ππ2π₯/tanβ‘π₯ ππ₯+π ππ2π¦/tanβ‘π¦ ππ¦)=γ 0 β«1βγπππππ/πππβ‘π π π+β«1βγπππππ/πππβ‘π π πγ=γ 0 Put u = tan x and v = tan y Diff u w.r.t. x & v w.r.t y Therefore, our equation becomes β«1βγsec^2β‘π₯/tanβ‘π₯ ππ₯γ+β«1βγsec^2β‘π¦/tanβ‘π¦ ππ¦=0γ ππ’/ππ₯ = π ππ2π₯ π π/πππππ" " = dx ππ£/ππ¦ = π ππ2π¦ π π/πππππ" " = dy β«1βγsec^2β‘π₯/tanβ‘π₯ ππ’/sec^2β‘π₯ γ+β«1βγ sec^2β‘π¦/π£ ππ£/sec^2β‘π¦ =0γ β«1βγππ’/π’+β«1βγππ£/π£=0γγ log |π|+πππβ‘|π|=πππβ‘π Putting back u = tan x and v = tan y log |πππβ‘π | + log |πππ§β‘π |=π₯π¨π β‘π log |tanβ‘γπ₯+tanβ‘π¦ γ | =logβ‘π tan x tan y = C