# Ex 9.4, 10 - Chapter 9 Class 12 Differential Equations (Term 2)

Last updated at Dec. 10, 2019 by

Last updated at Dec. 10, 2019 by

Transcript

Ex 9.4, 10 For each of the differential equations in Exercises 1 to 10, find the general solution : π^π₯ tanβ‘γπ¦ ππ₯+(1βπ^π₯ ) sec^2β‘γπ¦ ππ¦=0γ γ π^π₯ tanβ‘γπ¦ ππ₯+(1βπ^π₯ ) sec^2β‘γπ¦ ππ¦=0γ γ π^π₯ tanβ‘γπ¦ ππ₯=β(1βπ^π₯ ) sec^2β‘γπ¦ ππ¦γ γ π^π₯ tanβ‘γπ¦ ππ₯γ=(π^π₯β1) sec^2β‘γπ¦ ππ¦γ π^π₯/(π^π₯ β 1) dx = (π ππ2π¦ ππ¦)/tanβ‘π¦ Integrating both sides. β«1βγπ^π₯/(π^π₯ β 1) ππ₯γ = β«1βγ(π ππ2 π¦)/tanβ‘π¦ ππ¦γ Put π^π₯β1 = u and put tan y = v Diff u w.r.t. x & v w.r.t y Diff u w.r.t. x ex = ππ’/ππ₯ dx = ππ’/ππ₯ Diff v w.r.t. y sec2 y = ππ£/ππ¦ dy = ππ£/sec^2β‘π¦ Therefore β«1βγππ₯/π’ ππ’/ππ₯γ = β«1βπ ππ2π¦/(π£ π ππ2π¦) dv β«1βππ’/π’ = β«1βππ£/π£ log u + c1 = log v Putting back u = ex β 1 and V = tan y log |"ex β 1" | + c1 = log tan y Putting c1 = log c log |"ex β 1" |+ log c = log (tan y) log |π("ex β 1" )|= log |tanβ‘π¦ | π("ex β 1" ) = tan y tan y = c ("ex β 1" ) is the general solution

Ex 9.4

Ex 9.4, 1
Important

Ex 9.4, 2

Ex 9.4, 3

Ex 9.4, 4 Important

Ex 9.4, 5

Ex 9.4, 6

Ex 9.4, 7 Important

Ex 9.4, 8

Ex 9.4, 9 Important

Ex 9.4, 10 Important You are here

Ex 9.4, 11 Important

Ex 9.4, 12

Ex 9.4, 13

Ex 9.4, 14

Ex 9.4, 15 Important

Ex 9.4, 16

Ex 9.4, 17 Important

Ex 9.4, 18

Ex 9.4, 19 Important

Ex 9.4, 20 Important

Ex 9.4, 21

Ex 9.4, 22 Important

Ex 9.4, 23 (MCQ)

Chapter 9 Class 12 Differential Equations (Term 2)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.