

Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Ex 9.4
Ex 9.4, 2
Ex 9.4, 3
Ex 9.4, 4 Important
Ex 9.4, 5
Ex 9.4, 6
Ex 9.4, 7 Important
Ex 9.4, 8
Ex 9.4, 9 Important
Ex 9.4, 10 Important You are here
Ex 9.4, 11 Important
Ex 9.4, 12
Ex 9.4, 13
Ex 9.4, 14
Ex 9.4, 15 Important
Ex 9.4, 16
Ex 9.4, 17 Important
Ex 9.4, 18
Ex 9.4, 19 Important
Ex 9.4, 20 Important
Ex 9.4, 21
Ex 9.4, 22 Important
Ex 9.4, 23 (MCQ)
Last updated at Dec. 10, 2019 by Teachoo
Ex 9.4, 10 For each of the differential equations in Exercises 1 to 10, find the general solution : π^π₯ tanβ‘γπ¦ ππ₯+(1βπ^π₯ ) sec^2β‘γπ¦ ππ¦=0γ γ π^π₯ tanβ‘γπ¦ ππ₯+(1βπ^π₯ ) sec^2β‘γπ¦ ππ¦=0γ γ π^π₯ tanβ‘γπ¦ ππ₯=β(1βπ^π₯ ) sec^2β‘γπ¦ ππ¦γ γ π^π₯ tanβ‘γπ¦ ππ₯γ=(π^π₯β1) sec^2β‘γπ¦ ππ¦γ π^π₯/(π^π₯ β 1) dx = (π ππ2π¦ ππ¦)/tanβ‘π¦ Integrating both sides. β«1βγπ^π₯/(π^π₯ β 1) ππ₯γ = β«1βγ(π ππ2 π¦)/tanβ‘π¦ ππ¦γ Put π^π₯β1 = u and put tan y = v Diff u w.r.t. x & v w.r.t y Diff u w.r.t. x ex = ππ’/ππ₯ dx = ππ’/ππ₯ Diff v w.r.t. y sec2 y = ππ£/ππ¦ dy = ππ£/sec^2β‘π¦ Therefore β«1βγππ₯/π’ ππ’/ππ₯γ = β«1βπ ππ2π¦/(π£ π ππ2π¦) dv β«1βππ’/π’ = β«1βππ£/π£ log u + c1 = log v Putting back u = ex β 1 and V = tan y log |"ex β 1" | + c1 = log tan y Putting c1 = log c log |"ex β 1" |+ log c = log (tan y) log |π("ex β 1" )|= log |tanβ‘π¦ | π("ex β 1" ) = tan y tan y = c ("ex β 1" ) is the general solution