Ex 9.3, 18 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Ex 9.3
Ex 9.3, 2
Ex 9.3, 3
Ex 9.3, 4 Important
Ex 9.3, 5
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10 Important
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16
Ex 9.3, 17 Important
Ex 9.3, 18 You are here
Ex 9.3, 19 Important
Ex 9.3, 20 Important
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 9.3, 18 At any point (𝑥 , 𝑦) of a curve , the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (−4 , −3) . Find the equation of the curve given that its passes through(−2 , 1) Slope of tangent to the curve = 𝒅𝒚/𝒅𝒙 Slope of line segment joining (x, y) & (−4, −3) = (𝑦2 − 𝑦1)/(𝑥2 −𝑥1) = (−𝟑 − 𝒚)/(−𝟒 − 𝒙) = (−(𝑦 + 3))/(−(𝑥 + 4)) = (𝒚 + 𝟑)/(𝒙 + 𝟒) Given, at point (x, y). Slope of tangent is twice of line segment 𝒅𝒚/𝒅𝒙 = 2((𝒚 + 𝟑)/(𝒙 + 𝟒)) 𝑑𝑦/(𝑦 + 3) = (2 𝑑𝑥)/(𝑥 + 4) Integrating both sides ∫1▒〖𝑑𝑦/(𝑦 + 3) " " 〗= 2∫1▒〖" " ( 𝑑𝑥)/(𝑥 + 4)〗 log (y + 3) = 2 log (x + 4) + log C log (y + 3) = log (x + 4)2 + log C log (y + 3) − log (x + 4)2 = log C log (𝑦 + 3)/(𝑥 + 4)^2 = log C (𝒚 + 𝟑)/(𝒙 + 𝟒)^𝟐 = C The curve passes through (−2, 1) Put x = −2 & y = 1 in (1) (1 + 3)/(−2 + 4)^2 = C C = 4/(2)^2 = 4/4 C = 1 Put value c = 1 in equation (1) (𝑦 + 3)/(𝑥 + 4)^2 = 1 y + 3 = (x + 4)2 Hence the equation of the curve is y + 3 = (x + 4)2