Ex 9.3, 5 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Ex 9.3
Ex 9.3, 2
Ex 9.3, 3
Ex 9.3, 4 Important
Ex 9.3, 5 You are here
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10 Important
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16
Ex 9.3, 17 Important
Ex 9.3, 18
Ex 9.3, 19 Important
Ex 9.3, 20 Important
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 9.3, 5 For each of the differential equations in Exercises 1 to 10, find the general solution : (𝑒^𝑥+𝑒^(−𝑥) )𝑑𝑦−(𝑒^𝑥−𝑒^(−𝑥) )𝑑𝑥=0 (𝑒^𝑥+𝑒^(−𝑥) )𝑑𝑦−(𝑒^𝑥−𝑒^(−𝑥) )𝑑𝑥=0 (𝑒^𝑥+𝑒^(−𝑥) )𝑑𝑦 = (𝑒^𝑥−𝑒^(−𝑥) )𝑑𝑥 𝑑𝑦/𝑑𝑥 = (𝑒^𝑥 − 𝑒^(−𝑥))/(𝑒^𝑥 + 𝑒^(−𝑥) ) dx 𝒅𝒚 = (𝒆^𝒙 − 𝒆^(−𝒙))/(𝒆^𝒙 + 𝒆^(−𝒙) ) dx Integrating both sides. ∫1▒𝑑𝑦 = ∫1▒(𝑒^𝑥 − 𝑒^(−𝑥))/(𝑒^𝑥 + 𝑒^(−𝑥) ) dx 𝒚 = ∫1▒(𝒆^𝒙 − 𝒆^(−𝒙))/(𝒆^𝒙 + 𝒆^(−𝒙) ) dx Let t = 𝒆^𝒙+𝒆^(−𝒙) 𝑑𝑡/𝑑𝑥 = (𝑒^𝑥−𝑒^(−𝑥) ) dx = 𝒅𝒕/(𝒆^𝒙 − 𝒆^(−𝒙) ) Putting value of t and dt in (1) ∫1▒𝑑𝑦 = ∫1▒(𝑒^(𝑥 )−〖 𝑒〗^(−𝑥))/𝑡 𝑑𝑡/(𝑒^𝑥 − 𝑒^(−𝑥) ) . ∫1▒𝑑𝑦 = ∫1▒〖𝑑𝑡/𝑡 " " 〗 y = log |𝒕|+𝒄 Putting back t = 𝑒^𝑥−𝑒^(−𝑥) y = log |𝑒^𝑥−𝑒^(−𝑥) | + C As 𝒆^𝒙−𝒆^(−𝒙) > 0 So, its always positive Removing the modulus y = log (𝒆^𝒙−𝒆^(−𝒙)) + C