Solve all your doubts with Teachoo Black (new monthly pack available now!)

Ex 9.4

Ex 9.4, 1
Important

Ex 9.4, 2

Ex 9.4, 3

Ex 9.4, 4 Important

Ex 9.4, 5

Ex 9.4, 6

Ex 9.4, 7 Important

Ex 9.4, 8

Ex 9.4, 9 Important You are here

Ex 9.4, 10 Important

Ex 9.4, 11 Important

Ex 9.4, 12

Ex 9.4, 13

Ex 9.4, 14

Ex 9.4, 15 Important

Ex 9.4, 16

Ex 9.4, 17 Important

Ex 9.4, 18

Ex 9.4, 19 Important

Ex 9.4, 20 Important

Ex 9.4, 21

Ex 9.4, 22 Important

Ex 9.4, 23 (MCQ)

Chapter 9 Class 12 Differential Equations

Serial order wise

Last updated at Dec. 11, 2019 by Teachoo

Ex 9.4, 9 For each of the differential equations in Exercises 1 to 10, find the general solution : ππ¦/ππ₯=sin^(β1)β‘π₯ ππ¦/ππ₯=sin^(β1)β‘π₯ ππ¦ = sin^(β1)β‘π₯ dx Integrating both sides β«1βγππ¦ γ= β«1βγsin^(β1)β‘γπ₯.1 ππ₯γ γ y = sinβ1 x β«1βγ1 ππ₯ ββ«1β[1/β(1 β π₯^2 ) β«1βγ1.ππ₯ γ] γ dx Integrating by parts, using formula β«1βγπ (π₯)π(π₯)ππ₯ γ= π(π₯) β«1βγπ(π₯)ππ₯ ββ«1βγ[πβ²(π₯)β«1βπ(π₯)ππ₯] ππ₯ γ γ Take f(x) = sinβ1 x and g(x) = 1 ("β΄" (πγ(sinγ^(β1) π₯))/ππ₯=1/β(1 β π₯^2 )) y = x γπ ππγ^(β1) π₯ β β«1βπ₯/β(1 β π₯^2 ) dx Let t = 1 β x2 dt = β2xdx x dx = (βππ‘)/2 Hence, our equation becomes y = x sinβ1 x β β«1β(βππ‘)/(2βπ‘) y = x sinβ1 x + β«1βππ‘/(2βπ‘) y = x sinβ1 x + 1/2 β«1βγπ‘^((β1)/2) ππ‘γ y = x sinβ1 x + 1/2 π‘^((β1)/2 + 1)/((β1)/2 + 1) + C y = x sinβ1 x + 1/2 (π‘^(1/2) )/((1/2) )+πΆ y = x sinβ1 x + βπ‘ + C Putting back value of t y = x sinβ1 x + β(πβπ^π ) + C