Slide20.JPG

Slide21.JPG
Slide22.JPG


Transcript

Ex 9.3, 9 For each of the differential equations in Exercises 1 to 10, find the general solution : 𝑑𝑦/𝑑π‘₯=sin^(βˆ’1)⁑π‘₯𝑑𝑦/𝑑π‘₯=sin^(βˆ’1)⁑π‘₯ 𝑑𝑦 = sin^(βˆ’1)⁑π‘₯ dx Integrating both sides ∫1β–’γ€–π’…π’š γ€—= ∫1▒〖〖𝐬𝐒𝐧〗^(βˆ’πŸ)⁑〖𝒙.𝟏 𝒅𝒙〗 γ€— Integrating by parts, using formula ∫1▒〖𝑓 (π‘₯)𝑔(π‘₯)𝑑π‘₯ γ€—= 𝑓(π‘₯) ∫1▒〖𝑔(π‘₯)𝑑π‘₯ βˆ’βˆ«1β–’γ€–[𝑓′(π‘₯)∫1▒𝑔(π‘₯)𝑑π‘₯] 𝑑π‘₯ γ€— γ€— Take f(x) = sinβˆ’1 x and g(x) = 1 y = x γ€–π’”π’Šπ’γ€—^(βˆ’πŸ) 𝒙 βˆ’ ∫1▒𝒙/√(𝟏 βˆ’ 𝒙^𝟐 ) dx Let t = 1 βˆ’ x2 dt = βˆ’2xdx x dx = (βˆ’π‘‘π‘‘)/2 Hence, our equation becomes y = x sinβˆ’1 x βˆ’ ∫1β–’(βˆ’π‘‘π‘‘)/(2βˆšπ‘‘) y = x sinβˆ’1 x + ∫1▒𝑑𝑑/(2βˆšπ‘‘) y = x sinβˆ’1 x + 𝟏/𝟐 ∫1▒〖𝒕^((βˆ’πŸ)/𝟐) 𝒅𝒕〗 y = x sinβˆ’1 x + 𝟏/𝟐 𝒕^((βˆ’πŸ)/𝟐 + 𝟏)/((βˆ’πŸ)/𝟐 + 𝟏) + C y = x sinβˆ’1 x + 1/2 (𝑑^(1/2) )/((1/2) )+𝐢 y = x sinβˆ’1 x + βˆšπ‘‘ + C Putting back value of t y = x sinβˆ’1 x + √(πŸβˆ’π’™^𝟐 ) + C y = sinβˆ’1 x ∫1β–’γ€–πŸ 𝒅𝒙 βˆ’βˆ«1β–’[𝟏/√(𝟏 βˆ’ 𝒙^𝟐 ) ∫1β–’γ€–πŸ.𝒅𝒙 γ€—] γ€— dx

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.