

Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 9.4
Ex 9.4, 2
Ex 9.4, 3
Ex 9.4, 4 Important
Ex 9.4, 5
Ex 9.4, 6
Ex 9.4, 7 Important
Ex 9.4, 8
Ex 9.4, 9 Important You are here
Ex 9.4, 10 Important
Ex 9.4, 11 Important
Ex 9.4, 12
Ex 9.4, 13
Ex 9.4, 14
Ex 9.4, 15 Important
Ex 9.4, 16
Ex 9.4, 17 Important
Ex 9.4, 18
Ex 9.4, 19 Important
Ex 9.4, 20 Important
Ex 9.4, 21
Ex 9.4, 22 Important
Ex 9.4, 23 (MCQ)
Last updated at March 30, 2023 by Teachoo
Ex 9.4, 9 For each of the differential equations in Exercises 1 to 10, find the general solution : ππ¦/ππ₯=sin^(β1)β‘π₯ ππ¦/ππ₯=sin^(β1)β‘π₯ ππ¦ = sin^(β1)β‘π₯ dx Integrating both sides β«1βγππ¦ γ= β«1βγsin^(β1)β‘γπ₯.1 ππ₯γ γ y = sinβ1 x β«1βγ1 ππ₯ ββ«1β[1/β(1 β π₯^2 ) β«1βγ1.ππ₯ γ] γ dx Integrating by parts, using formula β«1βγπ (π₯)π(π₯)ππ₯ γ= π(π₯) β«1βγπ(π₯)ππ₯ ββ«1βγ[πβ²(π₯)β«1βπ(π₯)ππ₯] ππ₯ γ γ Take f(x) = sinβ1 x and g(x) = 1 ("β΄" (πγ(sinγ^(β1) π₯))/ππ₯=1/β(1 β π₯^2 )) y = x γπ ππγ^(β1) π₯ β β«1βπ₯/β(1 β π₯^2 ) dx Let t = 1 β x2 dt = β2xdx x dx = (βππ‘)/2 Hence, our equation becomes y = x sinβ1 x β β«1β(βππ‘)/(2βπ‘) y = x sinβ1 x + β«1βππ‘/(2βπ‘) y = x sinβ1 x + 1/2 β«1βγπ‘^((β1)/2) ππ‘γ y = x sinβ1 x + 1/2 π‘^((β1)/2 + 1)/((β1)/2 + 1) + C y = x sinβ1 x + 1/2 (π‘^(1/2) )/((1/2) )+πΆ y = x sinβ1 x + βπ‘ + C Putting back value of t y = x sinβ1 x + β(πβπ^π ) + C