Ex 9.3, 15 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Ex 9.3
Ex 9.3, 2
Ex 9.3, 3
Ex 9.3, 4 Important
Ex 9.3, 5
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10 Important
Ex 9.3, 11 Important
Ex 9.3, 12
Ex 9.3, 13
Ex 9.3, 14
Ex 9.3, 15 Important You are here
Ex 9.3, 16
Ex 9.3, 17 Important
Ex 9.3, 18
Ex 9.3, 19 Important
Ex 9.3, 20 Important
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 9.3, 15 Find the equation of curve passing through the point (0 , 0) and whose differential equation is π¦^β²=π^π₯ sinβ‘π₯ ππ¦/ππ₯ = π^π₯ sin x ππ¦ = π^π₯ sin x dx Integrating both sides β«1βππ¦ = β«1βγππ₯ sinβ‘γπ₯ ππ₯γ γ y = β«1βγππ πππβ‘γπ π πγ γ Integrating by parts, using formula β«1βγπ (π₯)π(π₯)ππ₯ γ= f(π₯) β«1βγπ(π₯)ππ₯ ββ«1βγ[πβ²(π₯)β«1βπ(π₯)ππ₯] ππ₯ γ γ Taking f(x) = ex and g (x) = sin x y = π^π₯ (βcosβ‘π₯) β β«1βγ(βcosβ‘π₯)γ π^π₯ ππ₯ y = βπ^π₯ πππ β‘π₯+β«1βγπ^π πππβ‘π π πγ Integrating by parts, using formula β«1βγπ (π₯)π(π₯)ππ₯ γ= f(π₯) β«1βγπ(π₯)ππ₯ ββ«1βγ[πβ²(π₯)β«1βπ(π₯)ππ₯] ππ₯ γ γ Taking f(x) = ex and g(x) = cos x y = βπ^π₯ πππ β‘π₯+ π^π₯ β«1βγγπππ π₯γβ‘γ ππ₯γβγ β«1β[(π^π₯) β«1βγcosβ‘π₯ ππ₯ γ]ππ₯ y = βπ^π₯ πππ β‘π₯+π^π₯ π ππβ‘π₯ ββ«1βγπ^π π¬π’π§β‘π π πγ But From (1) y = β«1βγππ₯ π ππβ‘γπ₯ ππ₯γ γ y = βπ^π₯ πππ β‘π₯+π^π₯ π ππβ‘π₯ βπ y + y = βπ^π₯ πππ β‘π₯+π^π₯ π ππβ‘π₯ 2y = π^π₯ (sinβ‘π₯βcosβ‘π₯) y = π^π₯ β«1βγγπ ππ π₯γβ‘γ ππ₯γβγ β«1β[(π^π₯) β«1βγsinβ‘π₯ ππ₯ γ]ππ₯ y = π/π π^π (πππβ‘πβπππβ‘π ) + C Given curve passes through (0, 0) Putting x = 0, y = 0 in equation 0 = 1/2 π^0 (sinβ‘0βcosβ‘0) + C 0 = 1/2 (0β1) + C 0 = (β1)/2 + C C = π/π Putting value of C in (1) y = π/π π^π (πππβ‘πβπππβ‘π ) + π/π y β 1/2 = 1/2 π^π₯ (sinβ‘π₯βcosβ‘π₯ ) (2π¦ β 1)/2 = 1/2 π^π₯ (sinβ‘π₯βcosβ‘π₯ ) 2y β 1 = π^π (πππβ‘πβπππβ‘π )