
Ex 9.3
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Ex 9.3, 8 For each of the differential equations in Exercises 1 to 10, find the general solution : 𝑥^5 𝑑𝑦/𝑑𝑥=−𝑦^5𝑥^5 𝑑𝑦/𝑑𝑥=−𝑦^5 𝒅𝒚/𝒚^𝟓 = (−𝒅𝒙)/𝒙^𝟓 Integrating both sides ∫1▒𝑑𝑦/𝑦^5 = ∫1▒𝑑𝑥/𝑥^5 𝑦^(−5 + 1)/(−5 + 1) = −𝑥^(−5 + 1)/(−5 + 1)+𝐶1 𝒚^(−𝟒)/(−𝟒)= −𝒙^(−𝟒)/(−𝟒) + C1 〖−𝑦〗^(−4)/4=" " 𝑥^(−4)/4 " + C1" −𝑦^(−4)=𝑥^(−4) + 4C1 −𝑦^(−4) = 𝑥^(−4) + C 𝒙^(−𝟒) + 𝒚^(−𝟒)=𝑪