Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12

Last updated at Jan. 7, 2020 by Teachoo

Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12

Transcript

Ex 6.3, 26 The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is (A) 3 (B) 1/3 (C) β 3 (D) β 1/3 Slope of tangent is ππ¦/ππ₯ π¦=2π₯^2+3 sinβ‘π₯ Differentiating w.r.t. π₯ ππ¦/ππ₯=π(2π₯^2 +3 sinβ‘π₯ )/ππ₯ ππ¦/ππ₯=4π₯+3 cosβ‘π₯ We know that Slope of tangent Γ Slope of Normal =β1 (4π₯+3 cosβ‘π₯ ) Γ Slope of Normal =β1 Slope of Normal = (β1)/(4π₯ + 3 cosβ‘π₯ ) We need to find Slope of Normal at π₯=0 At x = 0 Slope of Normal =(β 1 )/(4(0) + 3 cosβ‘γ0Β°γ ) =(β1)/(0 + 3(1) )=(β1)/( 3) Hence, Correct Answer is D

Ex 6.3

Ex 6.3, 1

Ex 6.3,2

Ex 6.3,3

Ex 6.3,4

Ex 6.3, 5 Important

Ex 6.3,6

Ex 6.3,7

Ex 6.3,8

Ex 6.3,9 Important

Ex 6.3,10

Ex 6.3,11 Important

Ex 6.3,12

Ex 6.3,13

Ex 6.3,14 Important

Ex 6.3,15 Important

Ex 6.3,16

Ex 6.3,17

Ex 6.3,18 Important

Ex 6.3,19

Ex 6.3,20

Ex 6.3,21

Ex 6.3,22

Ex 6.3,23 Important

Ex 6.3,24 Important

Ex 6.3,25

Ex 6.3,26 Important You are here

Ex 6.3,27

Chapter 6 Class 12 Application of Derivatives

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.