Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12

Last updated at Jan. 7, 2020 by Teachoo

Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12

Transcript

Ex 6.3, 5 Find the slope of the normal to the curve π₯=π cos^3β‘π, π¦=π sin3 π at π=π/4 Given π₯=π cos^3β‘π Differentiating w.r.t. ΞΈ ππ₯/ππ=π(γa cosγ^3β‘π )/ππ ππ₯/ππ=π .π(cos^3β‘π )/ππ ππ₯/ππ=π . 3 cos^2β‘π. (βsinβ‘π ) ππ₯/ππ=β 3π sinβ‘γπ cos^2β‘π γ Similarly π¦=π sin3 π Differentiating w.r.t. ΞΈ ππ¦/ππ=π(π sin3 π" " )/ππ ππ¦/ππ=π .π(sin3 π)/ππ ππ¦/ππ=π . 3 sin^2β‘π. (cosβ‘π ) ππ¦/ππ= 3π sin^2β‘γπ .πππ β‘π γ We know that Slope of tangent = ππ¦/ππ₯ =ππ¦/ππΓ·ππ₯/ππ =(3π sin^2β‘γπ cosβ‘π γ)/(β 3π sinβ‘γπ cos^2β‘π γ ) =(βsinβ‘π)/cosβ‘π =βtanβ‘π Putting π=π/4 β ππ¦/ππ₯β€|_(π = π/4)=βπ‘ππ(π/4) =β1 Now we know that Tangent is perpendicular to Normal Hence, Slope of tangent Γ Slope of Normal = β1 β1 Γ Slope of Normal = β1 Slope of Normal =(β1)/(β1) Slope of Normal = 1 Hence, Slope of Normal is 1

Ex 6.3

Ex 6.3, 1

Ex 6.3,2

Ex 6.3,3

Ex 6.3,4

Ex 6.3, 5 Important You are here

Ex 6.3,6

Ex 6.3,7

Ex 6.3,8

Ex 6.3,9 Important

Ex 6.3,10

Ex 6.3,11 Important

Ex 6.3,12

Ex 6.3,13

Ex 6.3,14 Important

Ex 6.3,15 Important

Ex 6.3,16

Ex 6.3,17

Ex 6.3,18 Important

Ex 6.3,19

Ex 6.3,20

Ex 6.3,21

Ex 6.3,22

Ex 6.3,23 Important

Ex 6.3,24 Important

Ex 6.3,25

Ex 6.3,26 Important

Ex 6.3,27

Chapter 6 Class 12 Application of Derivatives

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.