Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Tangents and Normals (using Differentiation)
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Important Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Important Deleted for CBSE Board 2024 Exams
Question 10 Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
Question 13 Deleted for CBSE Board 2024 Exams
Question 14 (i) Deleted for CBSE Board 2024 Exams
Question 14 (ii) Important Deleted for CBSE Board 2024 Exams
Question 14 (iii) Deleted for CBSE Board 2024 Exams
Question 14 (iv) Important Deleted for CBSE Board 2024 Exams
Question 14 (v) Deleted for CBSE Board 2024 Exams
Question 15 Important Deleted for CBSE Board 2024 Exams
Question 16 Deleted for CBSE Board 2024 Exams You are here
Question 17 Deleted for CBSE Board 2024 Exams
Question 18 Important Deleted for CBSE Board 2024 Exams
Question 19 Deleted for CBSE Board 2024 Exams
Question 20 Deleted for CBSE Board 2024 Exams
Question 21 Important Deleted for CBSE Board 2024 Exams
Question 22 Deleted for CBSE Board 2024 Exams
Question 23 Important Deleted for CBSE Board 2024 Exams
Question 24 Important Deleted for CBSE Board 2024 Exams
Question 25 Deleted for CBSE Board 2024 Exams
Question 26 (MCQ) Important Deleted for CBSE Board 2024 Exams
Question 27 (MCQ) Deleted for CBSE Board 2024 Exams
Tangents and Normals (using Differentiation)
Last updated at May 29, 2023 by Teachoo
Question 16 Show that the tangents to the curve 𝑦=7𝑥3+11 at the points where 𝑥=2 and 𝑥 =−2 are parallel.We know that 2 lines are parallel y Slope of 1st line = Slope of 2nd line 𝑚1=𝑚2 We know that Slope of tangent is 𝑑𝑦/𝑑𝑥 Given Curve is 𝑦=7𝑥^3+11 Differentiating w.r.t.𝑥 𝑑𝑦/𝑑𝑥=𝑑(7𝑥3 + 11)/𝑑𝑥 𝑑𝑦/𝑑𝑥=21𝑥^2 We need to show that tangent at 𝑥=2 & tangent at 𝑥=−2 are parallel i.e. we need to show (Slope of tangent at 𝑥=2) = (Slope of tangent at 𝑥=−2) Now, Slope of tangent = 𝑑𝑦/𝑑𝑥=21𝑥^2 Slope of tangent at 𝑥=2 〖𝑑𝑦/𝑑𝑥│〗_(𝑥 = 2)=21(2)^2=21 ×4=84 & Slope of tangent at 𝑥=−2 〖𝑑𝑦/𝑑𝑥│〗_(𝑥 =− 2)=21(−2)^2=21 ×4=84 Since, (Slope of tangent at 𝑥=2) = (Slope of tangent at 𝑥=−2) Thus, tangent at 𝑥=2 & tangent at 𝑥 are parallel Hence Proved