Question 16 - Tangents and Normals (using Differentiation) - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Tangents and Normals (using Differentiation)
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13
Question 14 (i)
Question 14 (ii) Important
Question 14 (iii)
Question 14 (iv) Important
Question 14 (v)
Question 15 Important
Question 16 You are here
Question 17
Question 18 Important
Question 19
Question 20
Question 21 Important
Question 22
Question 23 Important
Question 24 Important
Question 25
Question 26 (MCQ) Important
Question 27 (MCQ)
Tangents and Normals (using Differentiation)
Last updated at April 16, 2024 by Teachoo
Question 16 Show that the tangents to the curve 𝑦=7𝑥3+11 at the points where 𝑥=2 and 𝑥 =−2 are parallel.We know that 2 lines are parallel y Slope of 1st line = Slope of 2nd line 𝑚1=𝑚2 We know that Slope of tangent is 𝑑𝑦/𝑑𝑥 Given Curve is 𝑦=7𝑥^3+11 Differentiating w.r.t.𝑥 𝑑𝑦/𝑑𝑥=𝑑(7𝑥3 + 11)/𝑑𝑥 𝑑𝑦/𝑑𝑥=21𝑥^2 We need to show that tangent at 𝑥=2 & tangent at 𝑥=−2 are parallel i.e. we need to show (Slope of tangent at 𝑥=2) = (Slope of tangent at 𝑥=−2) Now, Slope of tangent = 𝑑𝑦/𝑑𝑥=21𝑥^2 Slope of tangent at 𝑥=2 〖𝑑𝑦/𝑑𝑥│〗_(𝑥 = 2)=21(2)^2=21 ×4=84 & Slope of tangent at 𝑥=−2 〖𝑑𝑦/𝑑𝑥│〗_(𝑥 =− 2)=21(−2)^2=21 ×4=84 Since, (Slope of tangent at 𝑥=2) = (Slope of tangent at 𝑥=−2) Thus, tangent at 𝑥=2 & tangent at 𝑥 are parallel Hence Proved