Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12






Last updated at April 14, 2021 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12
Transcript
Ex 6.3, 13 Find points on the curve π₯^2/9 + π¦^2/16 = 1 at which the tangents are (i) parallel to x-axis (ii) parallel to y-axis. π₯^2/9 + π¦^2/16 = 1 π¦^2/16=1βπ₯^2/9 Differentiating w.r.t. π₯ π(π¦^2/16)/ππ₯=π(1β π₯^2/9)/ππ₯ 1/16 π(π¦^2 )/ππ₯=π(1)/ππ₯βπ(π₯^2/9)/ππ₯ 1/16 Γ π(π¦^2 )/ππ₯ Γ ππ¦/ππ¦=0β1/9 π(π₯^2 )/ππ₯ 1/16 Γ π(π¦^2 )/ππ¦ Γ ππ¦/ππ₯=(β 1)/9 π(π₯^2 )/ππ₯ 1/16 Γ2π¦ Γππ¦/ππ₯=(β 1)/( 9) 2π₯ ππ¦/ππ₯=((β 1)/( 9) 2π₯)/(1/16 2π¦) ππ¦/ππ₯=(β 16)/9 π₯/π¦ Hence ππ¦/ππ₯=(β 16)/9 π₯/π¦ parallel to π₯βππ₯ππ Given tangent is parallel to π₯βππ₯ππ β Slope of tangent = Slope of π₯βππ₯ππ ππ¦/ππ₯=0 (β 16)/( 9) π₯/π¦=0 This is only possible if π₯=0 when π₯=0 π₯^2/4 + π¦^2/16=1 0/4+π¦^2/16=1 (πΌπ π¦=0, (β16)/( 9) π₯/0=β) π¦^2/16=1 π¦^2=16 π¦=Β±4 Hence the points are (π , π) & (π , βπ) parallel to π¦βππ₯ππ Similarly if line is parallel to π¦βππ₯ππ Angle with π₯βππ₯ππ =90Β° ΞΈ = 90Β° Slope = tan ΞΈ = tan 90Β°=β Hence ππ¦/ππ₯=β 16/9 π₯/π¦=β 16π₯/9π¦=1/0 This will be possible only if Denominator is 0 9π¦=0 π¦=0 Now it is given that π₯^2/9+π¦^2/16=1 Putting π¦=0 π₯^2/9+0/16=1 π₯^2/9=1 π₯^2=9 π₯=β9 π₯=Β±3 Hence the points at which tangent is parallel to π¦βππ₯ππ are (π , π) & (βπ , π)
Ex 6.3
Ex 6.3,2
Ex 6.3,3
Ex 6.3,4
Ex 6.3, 5 Important
Ex 6.3,6
Ex 6.3,7
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important
Ex 6.3,12
Ex 6.3,13 You are here
Ex 6.3,14 Important
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19
Ex 6.3,20
Ex 6.3,21
Ex 6.3,22
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25
Ex 6.3,26 Important
Ex 6.3,27
About the Author