

Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 6.3
Ex 6.3,2 Deleted for CBSE Board 2023 Exams
Ex 6.3,3 Important Deleted for CBSE Board 2023 Exams
Ex 6.3,4 Deleted for CBSE Board 2023 Exams
Ex 6.3, 5 Important Deleted for CBSE Board 2023 Exams
Ex 6.3,6 Deleted for CBSE Board 2023 Exams
Ex 6.3,7 Important Deleted for CBSE Board 2023 Exams You are here
Ex 6.3,8 Deleted for CBSE Board 2023 Exams
Ex 6.3,9 Important Deleted for CBSE Board 2023 Exams
Ex 6.3,10 Deleted for CBSE Board 2023 Exams
Ex 6.3,11 Important Deleted for CBSE Board 2023 Exams
Ex 6.3,12 Deleted for CBSE Board 2023 Exams
Ex 6.3,13 Deleted for CBSE Board 2023 Exams
Ex 6.3, 14 (i) Deleted for CBSE Board 2023 Exams
Ex 6.3, 14 (ii) Important Deleted for CBSE Board 2023 Exams
Ex 6.3, 14 (iii) Deleted for CBSE Board 2023 Exams
Ex 6.3, 14 (iv) Important Deleted for CBSE Board 2023 Exams
Ex 6.3, 14 (v) Deleted for CBSE Board 2023 Exams
Ex 6.3,15 Important Deleted for CBSE Board 2023 Exams
Ex 6.3,16 Deleted for CBSE Board 2023 Exams
Ex 6.3,17 Deleted for CBSE Board 2023 Exams
Ex 6.3,18 Important Deleted for CBSE Board 2023 Exams
Ex 6.3,19 Deleted for CBSE Board 2023 Exams
Ex 6.3,20 Deleted for CBSE Board 2023 Exams
Ex 6.3,21 Important Deleted for CBSE Board 2023 Exams
Ex 6.3,22 Deleted for CBSE Board 2023 Exams
Ex 6.3,23 Important Deleted for CBSE Board 2023 Exams
Ex 6.3,24 Important Deleted for CBSE Board 2023 Exams
Ex 6.3,25 Deleted for CBSE Board 2023 Exams
Ex 6.3,26 (MCQ) Important Deleted for CBSE Board 2023 Exams
Ex 6.3,27 (MCQ) Deleted for CBSE Board 2023 Exams
Last updated at March 16, 2023 by Teachoo
Ex 6.3, 7 Find points at which the tangent to the curve 𝑦=𝑥^3−3𝑥^2−9𝑥+7 is parallel to the x-axisEquation of Curve is 𝑦=𝑥^3−3𝑥^2−9𝑥+7 Differentiating w.r.t. 𝑥 𝑑𝑦/𝑑𝑥=𝑑(𝑥^3− 3𝑥^2 − 9𝑥 + 7)/𝑑𝑥 𝑑𝑦/𝑑𝑥=3𝑥^2−6𝑥−9+0 𝑑𝑦/𝑑𝑥=3𝑥^2−6𝑥−9 𝑑𝑦/𝑑𝑥=3(𝑥^2−2𝑥−3) 𝑑𝑦/𝑑𝑥=3(𝑥^2−3𝑥+𝑥−3) 𝑑𝑦/𝑑𝑥=3(𝑥(𝑥−3)+1(𝑥−3)) 𝑑𝑦/𝑑𝑥=3(𝑥+1)(𝑥−3) Given tangent to the curve is parallel to the 𝑥−𝑎𝑥𝑖𝑠 i.e. the Slope of tangent = Slope of 𝑥−𝑎𝑥𝑖𝑠 𝒅𝒚/𝒅𝒙=𝟎 3(𝑥+1)(𝑥−3)=0 (𝑥+1)(𝑥−3)=0 Thus 𝑥=−1 & 𝑥=3 When 𝒙=−𝟏 𝑦=𝑥^3−3𝑥^2−9𝑥+7 =(−1)^3−3(−1)^2−9(−1)+7 =−1−3+9+7 =12 Point is (−1 , 12) When 𝒙=𝟑 𝑦=𝑥^3−3𝑥^2−9𝑥+7 =(3)^3−3(3)^2−9(3)+7 =27−27−27+7 =− 20 Point is (3 , −20) Hence , the tangent to the Curve is parallel to the 𝑥−𝑎𝑥𝑖𝑠 at (−𝟏 , 𝟏𝟐) & (𝟑 , −𝟐𝟎)