

Ex 6.3
Ex 6.3,2
Ex 6.3,3 Important
Ex 6.3,4
Ex 6.3, 5 Important
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important You are here
Ex 6.3,12
Ex 6.3,13
Ex 6.3, 14 (i)
Ex 6.3, 14 (ii) Important
Ex 6.3, 14 (iii)
Ex 6.3, 14 (iv) Important
Ex 6.3, 14 (v)
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19
Ex 6.3,20
Ex 6.3,21 Important
Ex 6.3,22
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25
Ex 6.3,26 (MCQ) Important
Ex 6.3,27 (MCQ)
Last updated at April 14, 2021 by Teachoo
Ex 6.3, 11 Find the equation of all lines having slope 2 which are tangents to the curve 𝑦=1/(𝑥 − 3) , 𝑥≠3.The Equation of Given Curve is : 𝑦=1/(𝑥 − 3) We know that Slope of tangent is 𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥=𝑑(1/(𝑥 − 3))/𝑑𝑥 𝑑𝑦/𝑑𝑥=𝑑/𝑑𝑥 (𝑥−3)^(−1) 𝑑𝑦/𝑑𝑥=(−1) (𝑥−3)^(−1−1) . 𝑑(𝑥 − 3)/𝑑𝑥 𝑑𝑦/𝑑𝑥=−(𝑥−3)^(−2) 𝑑𝑦/𝑑𝑥=(−1)/(𝑥 − 3)^2 Given that slope = 2 Hence, 𝑑𝑦/𝑑𝑥 = 2 ∴ (−1)/(𝑥 − 3)^2 =2 −1=2(𝑥−3)^2 〖2(𝑥−3)〗^2=−1 (𝑥−3)^2=(−1)/( 2) We know that Square of any number is always positive So, (𝑥−3)^2>0 ∴ (𝑥−3)^2=(−1)/( 2) not possible Thus, No tangent to the Curve has Slope 2